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Abstract

We introduce multiple Wilson polynomials, which give a new example of multiple orthogonal poly-
nomials (Hermite—Padé polynomials) of type Il. These polynomials can be written as a Jacobi—Pifieiro
transform, which is a generalization of the Jacobi transform for Wilson polynomials, found by Koorn-
winder. Here we need to introduce Jacobi and Jacobi—Pifieiro polynomials with complex parameters.
Some explicit formulas are provided for both Jacobi—Pifieiro and multiple Wilson polynomials, one
of them in terms of Kampé de Fériet series. Finally, we look at some limiting relations and construct
a part of a multiple AT-Askey table.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Multiple orthogonal polynomials are a generalization of orthogonal polynomials in the
sense that they satisfy orthogonality conditions with respectdN measureg.,, . .., i,
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[3,11,22]. In this paper will always represent the number of weights. Multiple orthog-
onal polynomials arise naturally in the theory of simultaneous rational approximation, in
particular in Hermite—Padé approximation of a system @flarkov) functiong6,7,20].

There are two types of multiple orthogonal polynomials. In the present paper we only con-
sider multiple orthogonal polynomials of type II. Lidy = NU{O} andii = (nq, no, ..., n,)
e N be a vector of nonnegative integers, which is calledhalti-indexwith length|7| :=
ny+nz+---+n,. Furthermore lef’y, ..., I', be the supports of themeasures. A multi-
ple orthogonal polynomiaP; of type Il with respect to the multi-indek, is a (nontrivial)
polynomial of degree< || which satisfies the orthogonality conditions

/P;;(z)z'"d,uj(z)zo, 0<m<n; -1, j=1,...,r 1.2)

Notice that the measures in (1.1) are not necessarily supposed to be positive. In case of a
complex orthogonality relation, one usually refersRpas aformal multiple orthogonal
polynomial.

Eg. (1.1) leads to a system [@f] homogeneous linear relations for thg + 1 unknown
coefficients ofP;. A basic requirement in the study of such multiple orthogonal polynomials
is that there is (up to a scalar multiplicative constant) a unique solution of system (1.1). We
call 7 anormal indexfor g, ..., p, if any solution of (1.1) has exactly degrgd (which
implies unigueness). Let,(j) = fr,- zkd,uj (z) be thekth moment of the measuge. Further
set

l "
D; = (D - DI)T, (1.2)
where
() ) )
me. My My
() () ()
U my omylo... My
n . . .
) ) )
fil-1 M) - Mijn -2

is an|n| x n; matrix of moments of the measurg. ThenDj is the matrix of the linear
system (1.1) without the last column. It is known and easily verified that the multi-index

i = (n1,n2,...,n,) is normal if and only if this matrix has rank| [22]. When every
multi-index is normal we call the system of measuregdect system. For perfect systems,

the multiple orthogonal polynomials of type Il satisfy a recurrence relation of erdet.

The proof is similar to the proof of the three-terms recurrence relation satisfied by a sequence
of orthogonal polynomials, see for instarj8¢ Because of this recurrence relation, formal
multiple orthogonal polynomials are a useful tool in the spectral theory of non-symmetric
linear difference operatofd4].

In the literature one can find some examples of multiple orthogonal polynomials with
respect to positive measures on the real line which have the same flavor as the classical
orthogonal polynomials. Two classes of measures have been analyzed in more detail and
are known to form a perfect system, see for instance the monofaptr the survey given
in[11]. The first class consists of Angelesco systems where the supports of the measures are
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disjointintervals. In the second class of so-called AT systems, the supports ohdasures
coincide, and the Radon—Nikodym derivatives gdu, for j = 1, ..., r form an algebraic
Chebyshev systeif22, Section 1V.4]Jon the convex hull of the support. In the continuous
case (where the measures can be Writtemgs;‘d = w;(x)dx, with w; the weight function
of the measurg ;) there are multiple Hermite, multiple Laguerre | and II, Jacobi-Pifieiro,
multiple Bessel, Jacobi—Angeleso, Jacobi-Laguerre and Laguerre—Hermite polynomials,
see[4,11,22]and the references therein. Some discrete examples are multiple Charlier,
multiple Kravchuk, multiple Meixner | and Il and multiple Halfis]. All these examples
have the same flavor as the classical orthogonal polynomials as there exists a first-order
raising operator, based on the differential operdboor the difference operatorsandV,
and aRodrigues formula. Moreover, there exist differential or difference equations of order
r + 1 (with polynomial coefficientsj4]. So, they can be called classical. The recurrence
relations of order 41 are known explicitly for these examples in the case. Finally, we
mention that there also exist some examples of multiple orthogonal polynomials associated
with modified Bessel functiond 2,13,26]which can be called classical.

In Section3.1we recall the definition of one of these examples, namely Jacobi-Pifieiro
ponnomiaIsPﬁ(“’ﬁ), which are orthogonal with respect to the weightgx) = x*/ (1 — x)P
on[0, 1],a;, f > —1. These polynomials reduce to the classical Jacobi polynomials (shifted
to the interval[Q, 1]) for r = 1. We show in Sectio®.1 that Jacobi polynomials remain
formal orthogonal polynomials for complex parametersf, the corresponding complex
orthogonality relation being obtained via an analytic extension of the Beta function in
both variables. As we show in SectiBrl, also Jacobi—Pifieiro polynomials with complex
parameters are formal multiple orthogonal polynomials of type II. _

In SectiorB3.2we then introduce the formal multiple Wilson polynomigls-; a, b, ¢, d),
which give a new example of formal multiple orthogonal polynomials of type Il. They are
an extension of the formal Wilson polynomials(-; a, b, ¢, d) [27,28]for which we recall
the definition in Sectior2.2. We also mention that, with some conditions on the complex
parameters, b, ¢, d, we find the Wilson and Racah polynomials on the top of the Askey
scheme which have real orthogonality conditions.

The formal multiple Wilson polynomials satisfy complex orthogonality conditions with
respect ta Wilson weights

w(z;a,bj,c,d)
_Ta+9I'a—)I'(bj+2)I'(bj —2)I'(c+2)I'(c —2)I'(d+2)I'(d —2)
B I'(2z)I['(—2z) ’

(1.3)

j =1,...,r, where we integrate over the imaginary axis deformed so as to separate the
increasing sequences of poles of these weight functions from the decreasing ones. Note
that the parametets by, . . ., b,, ¢, d can take complex values. There are some additional
conditions on these complex parameters in order to ensure that the Wilson weights have
only simple poles. We prove in Theore3r8that the weight functions (1.3) form a perfect
systemifb; —b; ¢ Z whenevei # j.Inthe same theorem we show that, e +d) > 0

and 0 < |R(z)| < NR(a), the formal multiple Wilson polynomials can be written as the
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Jacobi—Pifeiro transform

1.

pi(%a,b,c,d) = K; / PEP wyw @B ) K (u, z; a, 0, ¢, d) du, (1.4)

0
whereax = (a +b1 —1,...,a+ b, —1)andf = ¢ +d — 1. Herek;; is a normalizing
constantw P () = u*(1 — u)P the Jacobi weight and
u—b—z c—z,d—z
K(u,z;a,b,c,d) = 2F 1—u
I'a—2Il'a+2)I(c+d) c+d

(1.5)
is a kernel function, independent ©fWe use the notation
Z H@ 1(f£)k Z
ﬁ Hz 1(¢z)k k'
Wheref e C?, a) e C4, which is a hypergeometric function. In the scalar case=(i)
formula (1.4) reduces to a Jacobi transform for the Wilson polynomials which was already
found by Koornwindef18, (3.3)]. We recall this Jacobi transform in SectiB and give
a short proof.

The Jacobi—Pifieiro transform (1.4) is the key formula of this paper. In Segtione
obtain two new hypergeometric representations for the Jacobi—Pifieiro polynomials starting
from the Rodrigues formula. Applying the Jacobi—Pifieiro transform (1.4) we then also find
two explicit formulas for the formal multiple Wilson polynomials (see Sec8@). One of
them is in terms of Kampé de Fériet serj24].

In Section4 we only consider the cases where we obtain real orthogonality conditions,
namely multiple Wilson and multiple Racah. Using appropriate limit relations we then
recover hypergeometric representations for the examples of multiple orthogonal polynomi-
als of type I, mentioned above. We also introduce some new examples like multiple dual
Hahn, multiple continuous dual Hahn, and multiple Meixner—Pollaczek. As a result, we

finally construct a (still incomplete) multiple AT-Askey table which extends the well known
Askey scheme for classical orthogonal polynomials to multiple orthogonal polynomials.

2. Jacobi and Wilson polynomials

2.1. Formal Jacobi polynomials

The (shifted) Jacobi polynomiaEf“’ﬁ) are a classical example of continuous orthogonal
polynomials. Suppose f > —1, then these polynomials are orthogonal with respect to the
Jacobi weight function @ (x) = x*(1 — x)? on the interval0, 1]. These polynomials
have the explicit expressioid]

Prfx,ﬁ)(z):w2F1<—n,oc+ﬂ+n+1 z), 2.1)
n! a+1
(oc—l—l)n 12" ﬁzFl(oH—l—l—n,—ﬂ—n Z>’ 2.2)
n! a+1




B. Beckermann et al. / Journal of Approximation Theory 132 (2005) 155-181 159

where the second expression is obtained by Euler’s forfduteb.3.3],[15]. We claim that

the (shifted) Jacobi polynomials,(“’m are still formal orthogonal polynomials if we allow
complex parameters f, o+ f+1e€ C\{-1,-2,...} informula (2.1). This was already
mentioned if19, Theorem 2.1], but we give a different proof.

In order to prove this claim, we require an integral representation for the meromorphic
continuation in both variables of the Beta function. Recall, e.g., fifob §1.1]that the
Gamma functiod” has no zeros and is meromorphidinvith simple polesat0-1, -2, ....
Hence the Beta functiofi5, §1.5]

I w)
C T'(z4w)

is meromorphic both imandw, with simple poles at, w = 0, —1, —2, .... From[15, §1.5]
we have the integral representation

B(z, w)

1
B(z, w) =/ YA - v, %(z) > 0, R(w) > 0. (2.3)
0

In order to obtain a representation valid for generab € C \ Z (compare with the
Pochhammer formull5, 1.6.(7)]), we follow[16, § 3.4]and consider three sheet$, S2
andsS3 of the appropriate Riemann surface for the functj‘b_ril(l— 0*=1 (in the variable
{) so that

—n<arg) <mn, —t<arg(l—{) <=, for{ € S1\ {(—o0, 01U [1, +00)},
O<arg@) <2n, m<arg(l—{) < 3r, for{e S2\{[0, +00) U[1,+00)},
n<arg() <3n, 0<arg(l—{ <2n, for{e S3\ {(—o0,0]U (—o0,1]}.

Furthermore we choose a closed contduwas in Fig.1 whereo1, o2, o3 are the transition
points between the three sheets. Note that the funétiohl— O 1is analytic onX. For
the Beta function we then have

B(Z, w) — (1_ eZTEiZ)—l(l _ eZniu))—1/ CZ—l(l _ g)w—l dC’ Z, = C \ Z
)

(2.4)

Indeed, iffi(z) > 0, R(w) > O then the path of integration in (2.4) can be deformed via the
usual “shrinking” method in order to approach the intef@all], leading to formula (2.3).
In particular, ifz and/orw is a strictly positive integer, we can obtablt(z, w) by taking
limits in (2.4).

Now we prove our claim that (shifted) Jacobi polynomials with complex parameters are
formal orthogonal polynomials.

Theorem 2.1. Leto, ff, o+ f+1 e C\{-1, -2, ...}, and consider thécomplexmeasure
1P defined by

/ hd‘u(aﬁ) — I|m (1_ ezﬁiZ)—l(l _ eZnizz))—lf h(C)(Z’(l_ C)w dC
)

z%d,w%ﬁ

Thenu(“vﬂ) forms a perfect systemwith the corresponding nth formal orthogonal polyno-

mial given by th€shifted)Jacobi ponnomiaIP,f“’ﬂ).
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O3 0 1
03

S1

0 1
2
02

S2
0 0, 1
O3 - -

S3

Fig. 1. The contou® on the appropriate Riemann surface zfé?l(l - w1,

Proof. From (2.4) we obtain for thkth moment
/ Fdu®P(z) = Bla+1+k, p+1).
The restrictions on the parameterand § guarantee that the determinant of the moment

matrix,

n

det(B(o+s+1— LB+ Dcsucn=]]
=1

T'a+0OI'(B+0 l—[
I'o+pf+n+40)

(t—s),

1<s<t<n

is different from zero. A proof for this formula uses Theorem 1 and[2,ib0] (the moment
matrix in the non-shifted case can be found2s, 6.71.5]). Thusu*# forms a perfect
system. Moreover, for &m <n — 1 we have, according to (2.1) and (2.4)

[ a-amp P @ aePe)

n

_(a+1%§:(—MHa+ﬁ+n+ln
ol P k(o + L)

_emwm+n+nnﬁ+m+ni:e®%k "

Tat+frntl k!(n—k)zequ(“wrk”)'

Bla+k+1,p+m+1)

k=0

The sum on the right-hand side is the divided differegigg[0, 1, . . ., n] of the polynomial
8mn(@) = [Timio(@+ p +z + ¢) of degreen —m — 1. Sincen —m — 1 < n, this is



B. Beckermann et al. / Journal of Approximation Theory 132 (2005) 155-181 161

equal to 0, which proves that the Jacobi polynomial is a formal orthogonal polynomial with
respect tqu®#. O

2.2. Formal Wilson polynomials

In [27] Wilson introduced the (formal) Wilson polynomials

pn(ZZ; a’ b5 C, d)
= (a+b)nla+cna+dn
-, b d - 17 4
« aF3 n,a+o+c+d+n a za+z1 . (2.5)
a+b,at+c,a+d
By using Whipple's identitie§2, Theorem 3.3.3], one can show that these formal Wilson
polynomials are symmetric in all four complex parameters, c, d. Furthermore, with
some conditions on these four parameters, the polynomials satisfy a complex orthogonality
with respect to the Wilson weight function

w(z;a,b,c,d)
_Ta+I'a—)I'(b+2)['(b—2)(c+2)I'(c—2)['(d+2)['(d—z2)
B I'(2:)I'(—-2z) '

Suppose that
2a0,a+b,a+c,a+d, 2b,b+c,b+d,2c,c+d,2d ¢{0,-1,-2,...}, (2.6)
so that the Wilson weight has only simple poles, and that
a+b+c+def0,-1,-2, ..} (2.7)

Furthermore leC denote the contour obtained by deforming the imaginary axis so as to
separate the increasing sequences of poles (72 o, {6 + k172, {c + A2, {d +K120)

from the decreasing ones ({—a k}2 ., {(—b — k2, {—c — k2o, {—d — k}72,), and
define the Wilson measuge®?-<4) by

fhdy(“*b*c'd) =/ h(zHw(z; a, b, ¢, d)dz. (2.8)
c
Wilson [27] proves the complex orthogonality relations
/ Pin(z; a, b, ¢, d)pa(z; a, b, ¢, AU D (2) = 6,,,2i M,

where
M, =2mn!(a+b+c+d+n—21,I(a+b+n)
XF(a+c—|—n)F(a—l—d+n)F(b+c+n)F(b+d+n)F(c+d—|—n)
I'(a+b+c+d+2n) '
The singleton system(@-?-¢-9) is perfect; this will follow from Lemma8.4 below.

In some cases we obtain real orthogonality conditions with respect to positive measures
onthereal ling27]. If R(a), R(b), R(c), R(d) > 0anda, b, c andd are real except possibly
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for conjugate pairs, the@ can be taken to be the imaginary axis and we obtain the real
orthogonality

o0
]n pm(—=x?;a,b, ¢, d)p,(—x?; a, b, ¢, d)
0

Ia+ix)[(b+ix)[(c+in)l(d+ix)|?
I'(2ix)

X ’ dx = 0y M,.
Another case is whea < 0 anda + b,a + ¢, a + d are positive or a pair of complex
conjugates occurs with positive real parts (where the conditiorg2{0, —1, -2, ...},
following from (2.6), is removable). We then get the same positive continuous weight
function where some positive point masses are added. In these cases we obtain the Wilson
polynomialsw, (z%; a, b, ¢, d) := p,(—z%; a, b, ¢, d) (see, e.g[17]), which are real when
Z2is real.
Finally in the case that one oft-b, a +c, a +d is equal to— N + ¢, with N a nonnegative
integer, one obtains a purely discrete orthogonality after dividingbyN + ¢) and letting
& — 0. Taking the substitution — z 4+ a and the change of variables=a + b — 1, =
c+d—1,y =a+d—1, = a—d we then find the Racah polynomials up to a multiplicative
constant:
—nn+oa+pf+1,—z,z+7y+0+1
R o0y = oy (T AEAE RIS EOTA ),

wherei(z) = z(z+y+d+1)ande+1=—-Norf+d+1=—-Nory+1=—N.(Here
we assume a translation of the conditions (2.6) and (2.7)). The Racah polynomials satisfy
the discrete orthogonality

i 4 D+ DB+ 0+ Ly + 6 + (7 + 5+ 3)/2)
= (a0 + (=B +7+ Dy + 04+ 1)/2i (6 + Lk!

X Ry (A(k); o, B, y, )Ry (A(k); o, B,7,0) =0,

m # n. Necessary and sufficient conditions for the positivity of the weights are quite messy.
An example of sufficient conditions is given[B7, (3.5)], namely

p+o+1=—-N, 94+0+1>-1 a>-1 y+0+1>—u
and either

y+1>-N or 0+1>—N.
The formal Wilson polynomials contain as limiting cases several families of orthogonal
polynomials like Hahn, dual Hahn, Meixner, Krawtchouk, Charlier, continuous Hahn, con-
tinuous dual Hahn, Meixner—Pollaczek, Jacobi, Laguerre and Hermite polynd@ifals

Section 4];[17, Chapter 2]. Together they form the Askey scheme of hypergeometric or-
thogonal polynomials. Moreover, there exgsainalogue§l7] for all these polynomials.
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2.3. Formal Wilson polynomials as a Jacobi transform

We now recall an integral relation between the Jacobi and the formal Wilson polynomials.
We also give a short proof which will help us to find explicit expressions for the formal
multiple Wilson polynomials in the next section.

Theorem 2.2(Koornwinder). Suppose that conditiorf2.6)and(2.7)hold,and thati (c +
d) > 0,0< |R(2)| < NR(a). Then we have

1
% a,b,c,d) = Kn/ PP wyw P () K (u, 2 a. b, ¢, d) du, (2.9)
0

witho = a +b—1andf = ¢ +d — 1, the Jacobi weight functiom 5 (1) = u*(1— u)#,
the constank, = n! I'(a + ¢ + n)I'(a + d 4+ n) and the kerne{1.5).

Remark 2.3. Koornwinder mentioned this Jacobi transform for the Wilson polynomials in
[18, (3.3)]. One can show that our representation coincides with that of Koornwinder by
making suitable parameter changes and the substitutiotaht? s — u. Notice also that
(2.9) is a particular case of a formula due to Me[jgt, p.103].

Proof. By comparing the explicit formulas (2.1) and (2.5) we see that it is sufficient to
prove that, for € N,

(@ —2)ela+2)e
TFa+c+0Ola+d+10)

/l uew(”_l’c“Ld_l)(u)K(u, z;a,0,c¢,d)du =

’ (2.10)
By definition of the kernel (1.5) we have

K@,z;a,0,c,d)=(a—2)¢(a+2)¢ K(u,z;a+4£,0,c,d),

andufw@Letrd=D ) = ylatt-Letd=D ) So, by replacing: + ¢ by a, we see that it
remains to show that, for @ |[R(z)| < NR(a) andf(c + d) > 0,

1
I'a+co)l(a+d)’
Euler’s formula gives the symmet® (u, —z; a +¢,0,¢,d) = K(u,z;a+¢,0, ¢, d). So,
it is enough to prove (2.11) for & N(z) < N(a) andN(c +d) > 0.

Denoting the left-hand side of (2.11) by Z, we have by definition of the kernel
7=
I'la—2)I'(a+2)I'(c+4d)
% /1 w@==Letd=1) ) gy <C —z,d—z
0
In order to change the order of summation and integration, we notice tha€ if A— B) >
0,
F A, B F A, B
21 C yv 2r1 C v

1
/ w@betd=DonK(wu, z:a,0,¢,d) du = (2.11)
0

1
1—u) du.
c+d

lim max
y11 vel0,1]

=0,
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which follows by observing that

I'(A+k)I'(B+k)

— pATB-C-11q 1 k
I'(C+ kI (1+k) (L+O®), k= oo,

by Stirling’s formula. Consequently, using the assumptitii®z) > 0, R(a — z) > O,
N(c +d) > 0 together with (2.3) we obtain by uniform convergence

1
7 =
I'a—2T'a+ ) (c+d)

1
. c—z,d—z2
xlim | w@abetd=D ) ,F ’
ytl /(; (2h c+d

y(1— u)) du

- (c — 2i(d — ) Y 1
=lim Z Sk kY / w@—z=Letd+k=1) (u) du
11 = Ta -2 (a+2)I(c+d+hk! Jo
).

) 1 ( c—2z,d—1z2
=Ilim 2F1

vl I'a+z2)I(a+c+d—72) a+c+d—z
The assumption on the parameters ensuresittat- c +d —z — (c—z+d — z)) > 0,
and hence we get from the Gauss form@aTheorem 2.2.2]f1, 15.1.20]

1 — _
7 Py ( c—z,d—z

I'a+2)I'la+c+d —72) a+c+d—z

as claimed in (2.11). O

1
) T Ta+dl@a+o)’

3. Formal multiple Wilson as a Jacobi—Pifieiro transform
3.1. Jacobi—Pifieiro with complex parameters

The Jacobi—Pifeiro polynomials are defined by a Rodrigues formula
- 1 r dri -
PP @) = -] (z—“f —nj_z”f”f) 1—g)lP, (3.1)
! i dz"

wheren! = ]‘[;Zlnj!. It is well known[23] that, provided thak; > —1,8 > —1 and

o; —oj & Zfori # j,the Jacobi-Pifieiro polynomials are multiple orthogonal polynomials
of type Il with respect to the (positive) Jacobi weight$i-#), j = 1, ..., r, ontheinterval

[0, 1]. Notice that these weights form an AT system, see[22], and hence we obtain a
perfect system of measures. Similar to Theo1n we show that for complex parameters
we keep formal multiple orthogonal polynomials of type Il. Here we use the measures
u(“fvﬁ) of Theoren®.1which have as support the contairbut can be reduced to complex
Jacobi weightso®-# on the interval0, 1]in the caseh(;) > —1,R(f) > —1.

Theorem 3.1. Leta;, f,o; + f € C\ {—1,-2,.. .} ando; —a; & Zfori # j. Then
the measures®-?, j = 1,...,r, defined as in Theorer®.1, form a perfect system.



B. Beckermann et al. / Journal of Approximation Theory 132 (2005) 155-181 165

The corresponding formal multiple orthogonal polynomial of typ&vith respect to the
multi-indexn is given by(3.1).

Proof. From Theorem 1 and 2 if9,10] we obtain for the determinant of the matrix of
moments (1.2) the expression

I7| roonj

3 I'(o; +0)
i =([Tré+o|(TTT1 A
" 1 i1 t=1 I'(ej+pf+n+10)
r n; nj
<(TT ] ¢-9 IT TI][@-a+t—9
Jj=11<s<t<n;j 1<i<j<r s=11=1

For our choice of parameters, this expression is different from zero, and hence every multi-
index is normal.

Our claim on the (formal) orthogonality of Jacobi—Pifieiro polynomials will be shown by
induction onr. For r = 1, Eq. (3.1) reduces to (2.1), and the claim follows from Theorem
2.1. For r >1, we observe first that, by the Rodrigues formula (3.1),

f&’ﬁ) (2) = 77 (1 — z)—/f @l
n nl! dZ”l

~(1)
<Za1+nl(1 _ Z)/f+nl Pﬁ(?‘l) ’ﬁ+”l)(z)> , (3.2)

where we denote by () the vectorv without thejth component. By the induction hy-

(1)
pothesis,P,;f‘l) Fim) s polynomial of degregi| — n1, and thus there exist scalars
with
@, ) " e
P, T @ = ) P, @)
=0

From the Rodrigues formula fer= 1 and (3.2) we then conclude
71| —n1
3 ny+¢
D=3 ( , )Ce PP @),
=0

which implies thatP;fa"ﬁ) is a polynomial of degregi| for which
/ PP @y du Py =0, 0<m<ng — 1,

by Theorem2.1. The other orthogonality conditions are obtained by observing that (3.1)
remains invariant if one changes the order in the product.

With help of the Leibniz rule applied to the Rodrigues formula, the authddslifderive
for r = 2 an explicit expression in terms of 2 sums. We now give a generalization of this
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formula forr > 2, using the notation

1_[[ 1 (fl)‘k‘

) 2—:o Z Hz 1(¢Z)\k\
\_,_/

r sums

k

1 (81—t (8D kst - (8D -

% Hm 1 k| —k1 k| —k1—k2 1_[( i, L (3.3)
it i) g Wi 2ty o Wb 5 " k!

wherek = (k1.....k),ii € Nj = (NU (0D, &1,....8m. ¥1.-... ¥, € C""*and

f € CP, ¢ € C1. We also give in (3.5) another new explicit expression for the formal

Jacobi—Pifieiro polynomials which reduces to (2.2) # 4.

Theorem 3.2. Lete = (1,...,1) be a multi-index of length r and(n) = (n1,n1 +
na, ..., |n|). Denote by /) the vector without the jth componenfor the Jacobi—Pifieiro
polynomials we have the hypergeometric representations
B
_ (ot + )i
oal

iz (Gt Bt D; @G+ii+e): @+ si) + B+ De)®
Ln (14 1); @ +)D: @+ s@) + B+ 1L)e)®

zE)

(3.4)

z) , (3.5

Proof. We prove 8.4) and (3.5) by induction on For r = 1, Egs. (3.4) and (3.5) reduce
to (2.1) and (2.2), respectively.
In the case > 2, we use formula:{ 2), where the induction hypothesis enables us to

and
a+n—+e, —f—|n
a+e

Pﬁ(a,ﬁ) 2) = (Of + e)n

AL-27F,uF (

whereni! = [];_yn;!and (@ + €); = [1}_1(etj + Dn;-

express the right-hand polynomlaf(l) Fm) as a hypergeometric sum. After exchanging
the order of summation and differentiation (which is only possibldfp 1 in case of
formula (3.5)), we apply the formulas

n1 -
Z_Ofl(l _ Z)_ﬁ% (Za1+n1+\k(l)\ (1 _ Z)ﬁ+nl)

& a+fni+ Dy (a+nm+Diy,  (—ni, IRl

= (a1 + D
1 ]{12::0 (o1 + 1)|,;| (a1 + f+n1+ 1)”;'_’(1 k!

(3.6)
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and

—on A" otk _ G4 D@1 +n1+ D
dzm (o1 + Dk '

to obtain the right-hand expressions of (3.4), and (3.5), respectively. It remains to prove

claims (3.6) and (3.7), the second one being obvious. We observe that the left-hand side of
(3.6) can be transformed using the Rodrigues formula fer 1 and (2.1), leading to the

expression
Z)
ni

=t RV 11, 3 (=g (01 + kD] + B+ na + 1y, 2
-t " (01 + D] 1 1 ki!

k1=0 1
Aot B+ Dy atm Dy (g

= (a1 + 1),
1/{1220 (o(1+1)|];| ((xl—l—ﬁ~|—n1+l)|];|_k1 k1!

as claimed in (3.6). O

z 3.7)

—n1, 01+ K|+ f+n1+ 1

KD - kD) 4 1), S F R
2% g + ] + Dy 2F1 T

)

In the above proof we have shown implicitly that the right hand-side of (3.5) is a poly-
nomial of degree< |#] in z.

Multiple orthogonal polynomials satisfy a recurrence relation of oredet, see, e.g[20,
§24];[3]. With the explicit formula (3.4) itis possible to compute the recurrence coefficients
by comparing the highest coefficients in the recurrence relatiorjdse for r = 2.

3.2. Formal multiple Wilson polynomials

We now consider Wilson weights
w(ia,bj,c,d), j=1....r, bj—b;j &7 i#], (3.8)

defined as in (1.3), that is, we change only one parameter (recall the symmetry of the
Wilson weights in all four parameters). As in the scalar case, which is the family of Wilson
polynomials, we suppose that for=1, ..., r

2a,a+bj,a+c,a+d,2bj,bj+c,bj+d,2c,c+d,2d ¢ {0,-1,-2,...},
(3.9

so that the Wilson weights have only simple poles, and that
a+bj+c+d¢f{0-1,-2,..}. (3.10)

As in the scalar case, we writé®2i-¢-4 for the resulting measures, where it is possible to
choose ajoint contodrwhichis the imaginary axis deformed so as to separate the increasing
sequences of poles ({ek} 2 o, {b1+k}72 . . .. {br+k}72 o, {cHh} S o, {d+K)2 o) fromthe
decreasing ones ({—eak}2 o, {—b1—k}72 g, .. s {=br =k} 0, {(—Cc—k}72 0. (=d—k}72 )

Letus show that the (possibly complex) Wilson measpfe$-% form a perfect system.
The corresponding multiple orthogonal polynomials will then be referred to as formal
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multiple Wilson polynomials. A basic observation in what follows is that, under some
additional conditions, the formal multiple Wilson polynomials can be written as a Jacobi—
Pifieiro transform, similar to (2.9).

Theorem 3.3. Suppose thg(8.9)and(3.10)hold and that; — b; & Z,i # j. The Wilson
measureg(@i-<d  j =1 .. . r then form a perfect systefurthermore,if %i(a) > 0
and%i(c+d) > 0,the formal multiple Wilson polynomial with multi-indéxan be written
as

1 N
Pﬁ(ZZ; a,b,c,d) = k; / P;fa'ﬁ)(u)w(“_l’ﬁ) w)K(u,z;a,0,c,d)du, (3.12)
0

for 0 < [M(z)| < N(a), whered, = (@ +b1—1,...,a+ b, — 1) = (a — 1)é + b, with
e=(1,...,1) e R',andff = ¢ +d — 1. The normalizing constant; = n! I'(a + ¢ +
[n])I"(a + d + |n]) is chosen so that it corresponds wit2.9) in the caser = 1 and the
kernelK (u, z; a, b, ¢, d) is defined as irf1.5).

Before we prove this theorem we need some technical lemmas.

Lemma 3.4. A system of r measures, ..., y, is perfect if and only iffor every multi-
indexi, there exists a polynomia?; of exactly degreéi| such that

/ Pi(z)Z" d,Uj(Z)ZO, 0<m<n; =1, j=1,...,r (3.12)
and
/ Pi()" du;(z) #0, j=1,....r (3.13)

In this case P; is the(up to normalization uniquenultiple orthogonal polynomial of type
Il with respect toz.

Proof. Suppose first thaf, ..., u,. is perfect, and take a®; the multiple orthogonal
polynomial of type Il with respect t6. Then it only remains to verify (3.13). Suppose the
contrary, that is, P;(z)z"i duj (z) = 0 for somgj. Then P; is also a multiple orthogonal
polynomial of type Il with respect t6 + ¢;, in contrast to the normality of the multi-index
n + ¢;. Heree; is thejth unit vector inR".

We will prove the other implication of this lemma by showing that every normal by
induction on the lengthi|. The multi-indexd is always normal, suppose therefore thit
of length > 1, with itsjth component strictly greater than 0. LRf be a multiple orthogonal
polynomial forz. If R; would have degree strictly less thpiy, then it would be a multiple
orthogonal polynomial for the multi-index — ¢; with length || — 1. By normality of
n — e; we then have that there exists a nonzero constastt thatR; = cPiz;. Thus
| R; (z)z”f‘lduj (z) # 0 by (3.13), in contradiction to the orthogonality relation (3.12) for
R;. As a consequence®; has the precise degréd, and thusi is normal. O
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Lemma 3.5. Suppose that the singleton systemsorm perfect systems fgr=1, ..., r,
with corresponding orthogonal polynomiaIB,fj) }». Thenthe system ofrmeasurgs. . ., 4,
is perfect if and only iffor every multi-index, there exists a polynomia?; and scalars
(J)
so that

|7
Pi) =Y o) P ), cfj; A0, ol #0, j=1...r (3.14)
t=n;

In this case P; is the(up to normalization uniquenultiple orthogonal polynomial of type
[l with respect toi.

Proof. If n is normal andP; is the corresponding multiple orthogonal polynomial, then
(3.14) follows by taking

4 / Pi(2) P (2) du;(2)
) = (3.15)

(o) e

where we observe that the denominator is not zero according. 18)(for the singleton
systemy;. In addition, ng) =0for¢ <n; by (3.12), c(’) # 0 by (3.13), an¢(’  #0.

Conversely, (3.14) plus the perfectness of the smgleton syst@mplies (3. 12) (3.13),
and hence the system, .. ., u, is perfect by Lemm&.4. O

We now prove Theoren3.3 by showing that (the analytic extension of) the integral
expression (3.11) is a possible candidate for a formal multiple Wilson polynomial.

Proof of Theorem 3.3. According to assumptions (3.9) and (3.10) of Theor&®, we
find thataj, f,a; + f+1€ C\{-1,-2,...}, j =1,...,r,andy; —o; ¢ Z whenever
i # j.Itfollows from Theoren8.1that the Jacobi— P|ne|r0 systartti-P), j=1,...,r,is
perfect. From Lemma&.5we may conclude that there exist scalaﬁ’% so that

I7]
ap ©.B) '
PPl =Y @, ) 2o 20,

t=n;

j=1,...,r.From,e.g., (3.4) we see that Jacobi—Pifieiro polynomials are rational functions
in each of the parametess or f. Taking into account (2.4) and (3.15), we may conclude
that any of the coefﬁcientsfl{z is a meromorphic function in each of the parametgrer

f. We now introduce

1 .
gi(z% a,b,c,d) = Kﬁfo P;l(“’ﬁ)(u)w(“_l’ﬁ)(u)K(u,z;a,O, c,d)du.
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This function is well defined for O< |R(z)| < NR(a) if R@@) > 0 and%i(c +d) > 0.
However, using (2.9), we obtain for evefy=1, ..., r that
a1 ‘
Gi@abedy=1; Y ) / PP wyw® P @)K w, z: a, bj, ¢, d) du,
"~ Jo
l=n;

li|

-y 7L!F(a+c+|ﬁ|)r(a+d+|ﬁ|) G
o 0 Ta+c+0OIa+d+10)

)Pz(z a,bj,c,d),

L=n;
and thus
il
gi(z%a,b,c,d)= Z =z (a+c+€)|n| cla+d+ 05— zC gpe(z a,bj,c,d)
t=n;
|7]
=3 dY) pePa.bj.c.d). (3.16)
t=n;

Observing that the expressions on the right-hand side of (3.16) are polynomizdsieh
meromorphic in any of the parametersb, c, d, we see that the right-hand expression of
(3.16) is well defined and independenf &br any choice o and the parametets b, ¢, d,
as long as (3.9) and (3.10) hold ahd— b; ¢ Z,i # j. Moreover, the new coefficients
d}é’r)’j andd}%’ \)ﬁl are different from zero.

Thus, ¢; (-; a, b, c,d) defined by (3.16) is a suitable candidate for a formal multiple
Wilson polynomial, and the system of Wilson measures is perfect by LeBabna [

We now want to deduce explicit expressions for the formal multiple Wilson polynomials
based on the explicit expressions (3.4) and (3.5) for the Jacobi—Pifieiro polynomials. Here
we use the Kampé de Fériet serj2sg]

FPipLp2 < f g, . Zz)

q:91:92 d) . ;p’ ¢
i
Z [Ti—1 (fox Z ]_[g 1@k—j T2 (he)j 21 j' é (3.17)
H@ 1(¢)K)k = 0 (we)k ]l_[ (5{)] (k= j!
which are a generalization of the 4Appel| series in 2 variables. Notice that,foy = 0,
the Kampé de Fériet series is a product of two hypergeometric series. Also, in the case
r=2,our functions/\/lfl’;g" defined in (3.3) are (finite) Kampé de Fériet series

p;m ( f 81: *8m (z1, ZZ))

q.(n1,n2) d’ ‘//1 lﬁ
Fp:l;m+1 f : (:n1)§ (—n2,81, .-, 8m)
a0 G0 W )

In what follows the parameters in the Kampé de Fériet series will always be chosen so that
the sum in (3.17) is finite, and hence we are not concerned with convergence problems.

71, Z2) . (3.18)
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Corollary 3.6. Lete = (1, ..., 1)beamulti-index oflengthsii) = (n1, n1+no, ..., |il)
ands; =a+b;+c+d—1,j =1,...,r. Denote bys ) the vectory without the jth
componentFor the multiple Wilson polynomials we have the hypergeometric representa-
tions
piz%a.b.c.d) = (@& + b)i(a + o)+ d)
32 (a—z,a+z,01+n); @+b+i): G +si)®
37i (a+c,a+d,a+by); @ +b)D : G +s@)®

z) (3.19)

and
pﬁ(zz; a,l;, c,d)
= (aé + b)i(a + o) (a + d) i
2L < (@a—za+2):(c+d—1; (a2+5+ﬁ,}—c—d )
20, (a+c,a+d) :(; (ae +b)

1, 1) ,
(3.20)
where(aé + 5),; = ]_[;.:l (@a+bjn,-

Proof. First note thatl — z)# = Zf‘;o(ﬁ)l%, which converges in the unit disk, so that
expression (3.5) can then be written as

(@ +e); pOLrL B); @+n+e —p—|nl) ..
! 0:0;r —:—@+e) )
Then start from the Jacobi—Pifieiro transform (3.11) and replace the Jacobi—Pifieiro poly-

nomial P;f&’ﬂ) by its explicit expressions (3.4) and (3.21), respectively. Since the sums are
finite, we can interchange the integral with the sums. Applying (2.10) then completes the
proof. [J

@,y _
PP () =

(3.21)

Remark 3.7. Forr = 2, we may apply3.18) to 3.19), leading to a representation as a
Kampé de Fériet series of typé‘ol;‘zg’. It seems to be non-trivial to derive from this formula

the representation as a Kampé de Fériet series ofﬁf'glgf asin (3.20).

4. Limit relations

In this section we consider some cases in which the orthogonality conditions of the formal
multiple Wilson polynomials reduce to orthogonality conditions with respect to a positive
measure on the real line. We then recover multiple Wilson and multiple Racah polynomials.
Next we use the limit relations between the orthogonal polynomials in the Askeyiable
to obtain some new examples of multiple orthogonal polynomials of type Il and some known
examples. In particular we look at what happens with the explicit expressions (3.19) and
(3.20) after applying these limit relations, where we use the notatien(1,...,1) € R"
ands (i) = (n1,n1 + no, ..., |n]). Most of these examples are known to be AT systems,
seg[5,11], which implies that every multi-index is normal .
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4.1. Multiple Wilson

With some restrictions on the parameters the orthogonality conditions of the formal
multiple Wilson polynomials reduce to real orthogonality conditions with respect to positive
measures on the real line. Lef > 0, j = 1,...,r, b; —b; ¢ Z wheneveri # j,
R(a), N(c), R(d) > 0 anda, c, d be real except for a conjugate pair. In that case the
imaginary axis can be taken as the cont@ufhe multiple Wilson polynomials

Wi(z%; a, b, c,d) == pi(—z% a, b, c,d) (4.1)
then satisfy the real orthogonality relations

Ia+ix)l(b;+ix)[(c+ix)I(d+ix) [? g

=0,
I'2ix) *

OO -
/ (2™ Wi (x?; a, b, ¢, d)
0

O<m<n;—1,j=1,...,r.fa < 0,a+b; >0,j=1,...,r,anda + c,a + d are
positive or a pair of complex conjugates with positive real parts, then we obtain the same
orthogonality conditions but with some extra positive point masses.

4.2. Multiple Racah

As in the scalar case it is also possible to obtain a purely discrete orthogonality. The
multiple Racah polynomial®;; (-; &, f3, y, ), where we only change the parametewith
o; —o; & Z whenever # j, satisfy the discrete orthogonality

XN) (@ 4+ Dk + Dr(B+ 0+ 1y + 0+ L (7 + 6 +3) /2

= o7+ 0+ Die(=f 47+ Di((r 40+ 1)/2)x(0 + Lik!
X Rji (A(k): . . 7. 6) (A(k))™ = 0,

0<m<n-—1,j=1,...,r,where
M) =z2(z+y+0+1) and f+d+1=—-Nory+1=—N.

They can be found by applying the substitutior> z + @ and the change of variables
#j =a+bj -1, =c+d—-1,9y=a+d—-10 = a—d on the polynomials
pi(z%; a, l;, c,d)/((ae + l;),;(a + o)ji(a + d) 7)) and we need a translation of conditions
(3.9) and (3.10). For the multiple Racah polynomials we then have the expressions

R; (A(2); 2, B, 7, 9)
)

_ @2 CrrHrHo+ Lot GHi+ &0 @+ sin?
82 B+o+1,y+L01+1);@+)D: (G +s53)D

witheo; =o; ++1,j=1,...,r,and
R;; (A(2); &, B, 7, 0)
. F2:1;r+1<(_ZvZ+V+5+1)5(ﬁ)?(&+ﬁ+gﬁ_ﬁ_|ﬁ|)‘l 1)
- 120 > o , .
’ B+o+1y+1D):0:@+e)
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An example of sufficient conditions to have positive weights is
p+o+1=—-N, 7y4+06+1>-1, o;>-1, 7y+6+1> —aj,
j=1,...,r, and either

y+1>-N or 0+1>—N.

Remark 4.1. Recall that the Wilson weight is symmetric in the four parameters so that
we can switch these parameters in the change of variables. We then obtain multiple Racah
polynomials where we change other parameters. For example we have multiple Racah
polynomialsk;; (-; a, 8, 7, 6) where we only change the paramefeénthe weights g, — 8, ¢

Z wheneveri # j). In that case we have that+ 1 = —N ory 4+ 1 = —N. As a second
example it is possible to change the paramefiersandé in such a way thad; + y; and

dj+ B; donotchange ang —y; ¢ Zwhenevei # j. Here we assume thatt- 1 = —N

or [3]- +6; +1 = —N for everyj. We then denote these multiple Racah polynomials by

R, (-; o, B,7, 0). However, this does not give another family of polynomials because
Ri(A@): o, B. 7. 0) = Ri(A(2): B+ 0.0 — 8.9, ) (4.2)
and
Ry (20 o .5, 0) = Ra(u@)i oo+ B — pj. 007 + 0j — ). (4.3)

These relations will help us in some of the examples of the subsections below to find explicit
expressions for the polynomials.

4.3. Some new examples

4.3.1. Multiple continuous dual Hahn

Letb; —b; ¢ Zwhenevei # j. The multiple continuous dual Hahn polynomials satisfy
the orthogonality conditions of the multiple Wilson polynomials where wellet +o0
(after dividing byI'(d)?). Similarly we obtain real orthogonality conditions with respect
to a positive measure #f; > 0 anda, ¢ are positive or a pair of complex conjugates with
positive real parts. We then denote fith multiple continuous dual Hahn polynomial by
Si(a, b, ). These polynomials satisfy the orthogonality conditions

I'(a+ix)['(b; +ix)['(c+ix)|?

I'(2ix) dr =0,

o0 -
/ ()" S3(x% a. b,
0
0<m<n;—1,j=1,...,r. Itisclear that

i . Wa 2; 91-;7 7d
Si(z% a,b,c) = lim Wiz%a. b, ¢, d) (4.4)
d—>+oo  (a+d)j

so, by

lim (C+d—1)k_j(1—c—d—|ﬁ|)j

= (-1, 0<j<k
,m @t dn =D J
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the multiple continuous dual Hahn polynomials have the explicit expressions

)

1, —1) .
4.3.2. Multiple dual Hahn
Considery;, 6, j = 1,...,r,sothaty;,6; > —1ory;, 6; < —N for eachj and that
7;+9; isindependent gf Suppose also thaf —y; ¢ Zwhenever # j. The multiple dual
Hahn polynomials, denoted b; (-; 7, 3, N), satisfy the system of discrete orthogonality
conditions

S;,(zz; a, l; c)

i

. s 1 (@—iz.a+iz): @@+ b+
= b); n Mz’l - 7
(aé +b)ji(a + o)z M3 < (@ +c.a+by): @é+b)®

3T 20r ((@—iz.a+iz): ;@ +b+i)
SO fror ( (a+c):0: (aé +b)

N @k 47946 + D@ + Dr(—=N)N!

,;) (=L +7; + 0 + Dn+1(d; + Lek!

Ri(2(k); 7,0, N) (A(k))"™ =0,

o<m<n—1,j =1,...,r, whered(z) = z(z + 7y + 0 + 1). The multiple dual Hahn
polynomials are related to the multiple Racah polynomials by

Ri((2): 7.6, N)

= lim_ Ri(i(): o —5— (N + 1), 7,9) (4.5)
oL—>+00
= aﬂrﬂoo R (A(2); 7, ot — 7;—0j—N—1ay;+6; —a), (4.6)

where we use (4.3). Note that

im (=7 —=0; =N =1y j(—a+y;+0; + N+ 1—|a]);

= (—1)/
o—>+00 (fx+1)k ( ) s

0<j <k, so that the multiple dual Hahn polynomials then have the explicit expressions
2)
1, —1) .

(—z.2+7;+0;+1:G+i+&"
(=N, y1+1);G+&)D

_ p20r < (—z,z2+7;+0; + 1): ():ﬁ(?+fi+é’)

e (=N):0:(+e)

Ri(2(2):7.0,N) = M5+ (

4.3.3. Multiple Meixner—Pollaczek

The multiple Meixner—Pollaczek polynomialt;l»(;')(-; 55) are multiple orthogonal poly-
nomials (of type Il) associated with the system of Weigﬁfg’./_“)xu"(l +ix)|? on the
positive real axis, wheré > 0,0< ¢; <=, j =1,...,r,and thep, ..., ¢, are differ-
ent. These weights form an AT system, $22, p.141]. The multiple Meixner—Pollaczek
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polynomials satisfy the conditions
o 1 N
/ x™ P;f ) (x; qb)e(zd’f_n)xw(i +ix)?dx =0, 0<m<n; — 1,
0

j=1,....r. Similar ag17, (2.3.1)]it is easy to check that
Si((z — )% A+ it, tcotg, A — it)

D, ;
-z, ) = lim = , 4.7)
" t—>+o0 (1 csco);; !

wherer cot&& = (t cot ¢4, ..., 1COt,) andtcscx?) = (1 CSCPy, ..., 1CSCP,). The mul-

tiple Meixner—Pollaczek polynomials then have the explicit expression

- r injg; 1 . -
22| szle AL < (A+iz); — 5 g—Zif/’) 7

Dy Gy — 0

i @)= il Muil 2 -
wheree=2® — (¢=2¢1, . ¢~2¢:) Here we donot have a Kampé de Fériét representation
such as in§.20).

4.3.4. Formal multiple continuous Hahn
Similar as in[17, (2.1.2)]we can use the limit relation

2 P
- . ((z+t)a—t,b+te,c—t,d+t
Pi(z;a,b,c,d) = lim pile+ 1) a rrec 1)
t—00 (@ +c—2t) n!

(4.8)
in order to find the formal continuous Hahn polynomials. They have the explicit expressions
P;(z; a, b,c, d)
(aé + b)i(a +d)ji
2)

_ 22 @tz o1+ n1); (@é + b+ )" 1 (3 + s(i)D
T 2R\ (@4d,a+by); (@ +b)D G+ sG) 0
1t [ @+2):(cH+d—1);@é+b+i,1—c—d—Jii])
Fior .7 1.1).
- (a+d):();(ae+b)

wheres; =a+bj+c+d—1,j =1,...,r. Ifthe parameters satisfy (3.9) and (3.10) and
b; —b; ¢ Zwhenevei # j, then these polynomials satisfy the orthogonality conditions

/C P;i(z; a, b,c, d)I'(a+2)I'(bj —2)(c+2)I'(d—2)z"dz=0, (4.9)

0<m<nj—1,j=1,...,r,whereCis acontour whichis the imaginary axis deformed so
as to separate the increasing sequences of poles-{l2 . - - -, {br + &}, {d + k12 ,)
from the decreasing ones ({—ak}2 . {—c — k12 ,)-

Remark 4.2. In the scalar case (= 1) it is possible to obtain real orthogonality relations
with respect to a positive measure if we suppfige), %t(b), %(c), R(d) > 0 anda = b,

¢ = d. This is not possible in this multiple case. For that one needs another family of
multiple continuous Hahn polynomials in which one changes both the pararaetedb.
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4.4. Some classical discrete multiple orthogonal polynomials

In this section we obtain hypergeometric formulas for the classical discrete examples of
multiple orthogonal polynomials of type Il, introduced[5], which are all examples of AT
systems. In particular we use the limit relations between these polynomials and the Racah
polynomialg17]. ThewM” 5 representation is already known in the cases1, 2. Where
it exists, the explicit expressmn in terms of a Kampé de Fériét series is new. We denote by
or the Dirac measure at the poixt

4.4.1. Multiple Hahn
These multiple orthogonal polynomials (of type II) satisfy orthogonality conditions with
respect tan hypergeometric distributions

N
(otj + Dk (B+Dn—x
'ujZkX;) o N 0! Ok, oj>—1, f>—-1,

o —o; ¢ {0,1,..., N—1},i # j,ontheintegersQ.., N. They can be found from the
multiple Racah polynomials taking+ 1 = —N andd — +o0, so that
E)

(=N, +1):@+)D: (6 +sm)®

1,1),

= p : —z,014n1): G+i+6)D: (G +si)D
;,/;,N(Z)ZM%S(( 14 n1): ( )02 (@ + ()

_ plitie ( (=2 (B: @+ ii + & —f = i

10 (=N): 0: (@+e)
wheres; = o;+f+1,j =1,...,r.Changing only the parametgdoes not give another
family of polynomials because (Q‘;;&N( )=C Qﬁ % N(N — x) with C some constant

(depending o, o andfi). However, we will need an explicit formula in powers>ofor
these polynomials to obtain multiple Meixner | and multiple Laguerre II. Using (4.2) and
the limits we mentioned above, we find that

g) |

Q o= M (=2, 0+ By +n1 4+ 1): B+ s@) + (@ + 1)
B (=N, o+ 1); (B + s() + (o + 1))@

4.4.2. Multiple Meixner |
In this case we considemegative binomial distributions

2 (B ch
/,(jzz m L ok, O<cj<1 >0,
k=0

with all thec;, j =1...,r,different. We get these polynomials from the multiple Hahn

lc,

polynom|aIsQ_ replacmgoc =pf-1,8,=N and lettingV — +o00. We then
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obtain
pié 10 (=20 c—e)
ML = M7= = ,
i@ 1( B0 | @
where=¢ = (clczl, e %)

4.4.3. Multiple Meixner Il
In the case of multiple Meixner Il polynomials we only change the paranfeierthe
negative binomial distributions, so that

llj—z (B; )kC

k=0

Ok, 0<c<1,ﬁj>0,

with B; — B; & Z whenevei # j.Takingo; = f; — 1, = {VlT_C and lettingN — +o0
in the explicit formulas for the multiple Hahn polynomiz@fﬁw, we obtain

Bic 11 [ (=2 (Z?—}—fi)m c—1.
M;"(z) = M5 - -7
" L ( B: PO | ¢
c—1 1-c¢
c ' ¢
4.4.4. Multiple Kravchuk

1:.0.r (=2): 0s (ﬁ+n)
o0 0:0: (B

These polynomials satisfy the orthogonality conditions (1.1) withrthmomial distri-

butions

N
N _
K= Z <k>P]}(1— PN S, 0<pj <1,
k=0
where all thep;, j = 1..., r, are different. They are related to the multiple Hahn polyno-
mials Qaﬁ replacmgﬂ_t o —
pi (=2;0 |1
-1
i @ (=N); Ol p
1_ (4 1
where; = (E""’ E)'

4.4.5. Multiple Charlier
In the case of multiple Charlier we considePoisson distributions

o0 k

J
,ujzz Hék, aj>0,
k=0
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with allthea;, j = 1..., r, different. The corresponding multiple orthogonal polynomials
(of type 1) can be found from the multiple Meixner | polynomials taking= a”—_fm and
J

letting § — +o0. The multiple Charlier polynomials then have the explicit expression

o= |- 3):

wherel = (l i).

ai k) k) a,
4.5. Some classical continuous multiple orthogonal polynomials

In this section we recall some classical continuous examples of multiple orthogonal
polynomials of type Il where the measures (or weight functions) form an AT system and
obtain hypergeometric formulas for these polynomials. TMﬁ‘ representationis already
known in the cases = 1, 2. The explicit expression in terms of a Kampé de Fériét series is
new (if it exists). For an overview of these polynomials and their properties we recommend
[4,11].

4.5.1. Jacobi—Pifieiro B

In Section3.1 we recalled the Jacobi—Pifeiro polynomid?,g’ﬂ, which, in the case
o;, f > —1, are the multiple orthogonal polynomials (of type II) with respect to the Jacobi
weightsw®-f(x) = x% (1 —x)P, j = 1,...,r, on the interval0, 1]. Hereo; — o; ¢ Z
whenevel # j. For the explicit formulas see Theoreéh?. Similar as in the multiple Hahn
case we have tha‘l’ﬁ(“ ﬁ)( ) = (— 1)‘”|P(ﬂ (1 — 7). So, changing only the parameigr
does not give another family of ponnomlaIs For these polynomials we have

zE) )
4.5.2. Multiple Laguerre | .
The multiple Laguerre | polynomials? are orthogonal of0, +oc) with respect to the
r weightsw;(x) = x%e™*, wherea; > —1,j =1,...,r,ando; — o; ¢ Z whenever
i # j. They can be found from the Jacobi—Pifieiro ponnom}z}l?fsﬁ substitutingz — %
and lettingf — co. We then obtain the hypergeometric expressions

_ G+ M(l);;f( 0: G +ii + &) ZE)

PP o)
= |im
N—+o00
_ (4 Dy (4 By +n1+1); (B+s@) + (@ + 1)) D
i @+ 1); (B + s@i) + (@ + 1)e)®

+ D B
%Qﬁ’ﬂ “(v2)

1!

(1 +1); @+ e&)D

_Z>,

=(a+g)ﬁleFr<&J:ﬁi_E
o+ e
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4.5.3. Multiple Laguerre I )
In this case the polynomialsfl“’”) have the orthogonality conditions (1.1) with respect to
the weight functionsv; (x) = x%e~%*, j =1,...,r,0n [Q 4+o00), wherex > —1,c; > 0

and all thec; different. They can be obtained from the Jacobi—Pifieiro ponnorﬁﬂ’@
by the substitutions — 7, takingf; = c;z and lettingr — oo. We then get

o + 1 n 0:0 5

! L\ (0 +1):0
In the multiple Hermite case we consider the type Il multiple orthogonal polynomials
H with respect to the weights; (x) = e"‘2+cfx, j=1,...,r,0n (—00,+00). Here the
c; are different real numbers. These polynomials can be obtained from the Jacobi—Pifieiro

ponnomiaIng“ﬁtakingocj = B+c;+/B, the substitution — (z++/f)/(2,/B) and letting
p — +o0 after multiplying with some constant depending/and ;.

(,6) r N _
Lﬁ (z) =

5. Conclusion

In Sectiond we have shown that, for a particular restricted choice of parameters, formal
multiple Wilson polynomials contain both multiple Wilson and multiple Racah polynomi-
als. These polynomials can be found on the top of the scheme presented 2n Whigch
resembles the well-known Askey scheme for classical orthogonal polynomials. Every entry
of this scheme corresponds to an extension of classical orthogonal polynomials to the mul-
tiple orthogonality case, with measures having the same support. The arrows in this scheme
correspond to possible limit relations: most of them have explicitly been given in Sec-
tions4.3-4.5. It is well known that multiple Hahn polynomials and all multiple orthogonal

M322 Multiple Multiple
3n Wilson Racah
2;1/2 cc'\)/:::ilgﬁ::?us Multiple Multiple
2n dual Hahn / Hahn dual Hahn
1,011/ mg!gg:_ Jacobi- Multiple Multiple Multiple
1A Pollaczek Pifieiro Meixner | Meixner II Kravchuk
| ] |
= < —
0;0/1
15 Multiple Multiple Multiple
1,0 Laguerre Il Laguerre | Charlier
on

Fig. 2. An (incomplete) multiple AT-Askey scheme.
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polynomials occurring in the third and the fourth row of the scheme are examples of AT
systems. We conjecture that also the remaining families of measures in the first and the
second row of the scheme form an AT-system. This motivates us to call the scheme of Fig.
2 the multiple AT-Askey scheme.

This scheme does not contain all the possible examples of multiple orthogonal polyno-
mials generalizing the classical orthogonal polynomials of the Askey scherfiel]ithe
authors also mentioned some examples of Angelesco systems (with their hypergeometric
expression). It is also possible to change more than one parameter in the Wilson weight
(maybe with some correlation) in order to find other examples of multiple Wilson polyno-
mials. Then it is for example possible to obtain (other kinds of) multiple continuous Hahn
polynomials corresponding to positive measures on the real line, using some limit relations.
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