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Abstract

We introducemultipleWilson polynomials, which give a new example ofmultiple orthogonal poly-
nomials (Hermite–Padé polynomials) of type II. These polynomials can bewritten as a Jacobi–Piñeiro
transform, which is a generalization of the Jacobi transform forWilson polynomials, found by Koorn-
winder. Here we need to introduce Jacobi and Jacobi–Piñeiro polynomials with complex parameters.
Some explicit formulas are provided for both Jacobi–Piñeiro and multiple Wilson polynomials, one
of them in terms of Kampé de Fériet series. Finally, we look at some limiting relations and construct
a part of a multiple AT-Askey table.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Multiple orthogonal polynomials are a generalization of orthogonal polynomials in the
sense that they satisfy orthogonality conditions with respect tor ∈ N measures�1, . . . , �r
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[3,11,22]. In this paperr will always represent the number of weights. Multiple orthog-
onal polynomials arise naturally in the theory of simultaneous rational approximation, in
particular in Hermite–Padé approximation of a system ofr (Markov) functions[6,7,20].
There are two types ofmultiple orthogonal polynomials. In the present paperweonly con-

sidermultipleorthogonal polynomialsof type II. LetN0 = N∪{0}and�n = (n1, n2, . . . , nr )

∈ Nr
0 be a vector ofr nonnegative integers, which is called amulti-indexwith length|�n| :=

n1 + n2 + · · · + nr . Furthermore let�1, . . . , �r be the supports of ther measures. A multi-
ple orthogonal polynomialP�n of type II with respect to the multi-index�n, is a (nontrivial)
polynomial of degree� |�n| which satisfies the orthogonality conditions∫

P�n(z)zm d�j (z) = 0, 0�m�nj − 1, j = 1, . . . , r. (1.1)

Notice that the measures in (1.1) are not necessarily supposed to be positive. In case of a
complex orthogonality relation, one usually refers toP�n as aformalmultiple orthogonal
polynomial.
Eq. (1.1) leads to a system of|�n| homogeneous linear relations for the|�n| + 1 unknown

coefficients ofP�n.A basic requirement in the study of suchmultiple orthogonal polynomials
is that there is (up to a scalar multiplicative constant) a unique solution of system (1.1). We
call �n anormal indexfor �1, . . . , �r if any solution of (1.1) has exactly degree|�n| (which
implies uniqueness). Letm

(j)
k = ∫

�j
zkd�j (z) be thekthmoment of themeasure�j . Further

set

D�n = (D
(1)

�n · · · D
(r)

�n )T , (1.2)
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is an|�n| × nj matrix of moments of the measure�j . ThenD�n is the matrix of the linear
system (1.1) without the last column. It is known and easily verified that the multi-index
�n = (n1, n2, . . . , nr ) is normal if and only if this matrix has rank|�n| [22]. When every
multi-index is normal we call the system of measures aperfect system. For perfect systems,
the multiple orthogonal polynomials of type II satisfy a recurrence relation of orderr + 1.
Theproof is similar to the proof of the three-terms recurrence relation satisfiedbya sequence
of orthogonal polynomials, see for instance[3]. Because of this recurrence relation, formal
multiple orthogonal polynomials are a useful tool in the spectral theory of non-symmetric
linear difference operators[14].
In the literature one can find some examples of multiple orthogonal polynomials with

respect to positive measures on the real line which have the same flavor as the classical
orthogonal polynomials. Two classes of measures have been analyzed in more detail and
are known to form a perfect system, see for instance themonograph[22] or the survey given
in [11]. The first class consists ofAngelesco systemswhere the supports of themeasures are
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disjoint intervals. In the second class of so-calledAT systems, the supports of ther measures
coincide, and the Radon–Nikodym derivatives d�j /d�1 for j = 1, . . . , r form an algebraic
Chebyshev system[22, Section IV.4]on the convex hull of the support. In the continuous
case (where themeasures can bewritten as d�j (x) = wj (x)dx, withwj theweight function
of the measure�j ) there are multiple Hermite, multiple Laguerre I and II, Jacobi–Piñeiro,
multiple Bessel, Jacobi–Angeleso, Jacobi–Laguerre and Laguerre–Hermite polynomials,
see[4,11,22]and the references therein. Some discrete examples are multiple Charlier,
multiple Kravchuk, multiple Meixner I and II and multiple Hahn[5]. All these examples
have the same flavor as the classical orthogonal polynomials as there exists a first-order
raising operator, based on the differential operatorD or the difference operators� and∇,
and aRodrigues formula. Moreover, there exist differential or difference equations of order
r + 1 (with polynomial coefficients)[4]. So, they can be called classical. The recurrence
relations of orderr +1 are known explicitly for these examples in the caser �2. Finally, we
mention that there also exist some examples of multiple orthogonal polynomials associated
with modified Bessel functions[12,13,26]which can be called classical.
In Section3.1we recall the definition of one of these examples, namely Jacobi–Piñeiro

polynomialsP (��,�)

�n , which are orthogonal with respect to the weightswj (x) = x�j (1−x)�

on[0, 1],�j , � > −1.Thesepolynomials reduce to the classical Jacobi polynomials (shifted
to the interval[0, 1]) for r = 1. We show in Section2.1 that Jacobi polynomials remain
formal orthogonal polynomials for complex parameters�1, �, the corresponding complex
orthogonality relation being obtained via an analytic extension of the Beta function in
both variables. As we show in Section3.1, also Jacobi–Piñeiro polynomials with complex
parameters are formal multiple orthogonal polynomials of type II.
InSection3.2we then introduce the formalmultipleWilson polynomialsp�n(·; a, �b, c, d),

which give a new example of formal multiple orthogonal polynomials of type II. They are
an extension of the formalWilson polynomialspn(·; a, b, c, d) [27,28]for which we recall
the definition in Section2.2. We also mention that, with some conditions on the complex
parametersa, b, c, d, we find the Wilson and Racah polynomials on the top of the Askey
scheme which have real orthogonality conditions.
The formal multiple Wilson polynomials satisfy complex orthogonality conditions with

respect tor Wilson weights

w(z; a, bj , c, d)

= �(a + z)�(a − z)�(bj + z)�(bj − z)�(c + z)�(c − z)�(d + z)�(d − z)

�(2z)�(−2z)
,

(1.3)

j = 1, . . . , r, where we integrate over the imaginary axis deformed so as to separate the
increasing sequences of poles of these weight functions from the decreasing ones. Note
that the parametersa, b1, . . . , br , c, d can take complex values. There are some additional
conditions on these complex parameters in order to ensure that the Wilson weights have
only simple poles. We prove in Theorem3.3that the weight functions (1.3) form a perfect
system ifbi −bj /∈ Z wheneveri �= j . In the same theoremwe show that, for�(c+d) > 0
and 0< |�(z)| < �(a), the formal multiple Wilson polynomials can be written as the
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Jacobi–Piñeiro transform

p�n(z2; a, �b, c, d) = ��n
∫ 1

0
P

(��,�)

�n (u)w(a−1,�)(u)K(u, z; a, 0, c, d)du, (1.4)

where�� = (a + b1 − 1, . . . , a + br − 1) and� = c + d − 1. Here��n is a normalizing
constant,w(�,�)(u) = u�(1− u)� the Jacobi weight and

K(u, z; a, b, c, d) = u−b−z

�(a − z)�(a + z)�(c + d)
2F1

(
c − z, d − z

c + d

∣∣∣∣ 1− u

)
(1.5)

is a kernel function, independent of�n. We use the notation

pFq

( �f
��

∣∣∣∣∣ z
)

=
∞∑

k=0

∏p
�=1(f�)k∏q
�=1(��)k

zk

k! ,

where �f ∈ Cp, �� ∈ Cq , which is a hypergeometric function. In the scalar case (r= 1)
formula (1.4) reduces to a Jacobi transform for theWilson polynomials which was already
found by Koornwinder[18, (3.3)]. We recall this Jacobi transform in Section2.3and give
a short proof.
The Jacobi–Piñeiro transform (1.4) is the key formula of this paper. In Section3.1we

obtain two new hypergeometric representations for the Jacobi–Piñeiro polynomials starting
from the Rodrigues formula. Applying the Jacobi–Piñeiro transform (1.4) we then also find
two explicit formulas for the formal multipleWilson polynomials (see Section3.2). One of
them is in terms of Kampé de Fériet series[24].
In Section4 we only consider the cases where we obtain real orthogonality conditions,

namely multiple Wilson and multiple Racah. Using appropriate limit relations we then
recover hypergeometric representations for the examples of multiple orthogonal polynomi-
als of type II, mentioned above. We also introduce some new examples like multiple dual
Hahn, multiple continuous dual Hahn, and multiple Meixner–Pollaczek. As a result, we
finally construct a (still incomplete) multipleAT-Askey table which extends the well known
Askey scheme for classical orthogonal polynomials to multiple orthogonal polynomials.

2. Jacobi and Wilson polynomials

2.1. Formal Jacobi polynomials

The (shifted) Jacobi polynomialsP (�,�)
n are a classical example of continuous orthogonal

polynomials. Suppose�, � > −1, then these polynomials are orthogonal with respect to the
Jacobi weight functionw(�,�)(x) = x�(1− x)� on the interval[0, 1]. These polynomials
have the explicit expressions[8]

P
(�,�)
n (z) = (� + 1)n

n! 2F1

( −n, � + � + n + 1

� + 1

∣∣∣∣ z
)

, (2.1)

= (� + 1)n

n! (1− z)−�
2F1

(
� + 1+ n, −� − n

� + 1

∣∣∣∣ z
)

, (2.2)



B. Beckermann et al. / Journal of Approximation Theory 132 (2005) 155–181 159

where the second expression is obtained by Euler’s formula[1, 15.3.3],[15]. We claim that

the (shifted) Jacobi polynomialsP (�,�)
n are still formal orthogonal polynomials if we allow

complex parameters�, �, �+�+1 ∈ C \ {−1,−2, . . .} in formula (2.1). This was already
mentioned in[19, Theorem 2.1], but we give a different proof.
In order to prove this claim, we require an integral representation for the meromorphic

continuation in both variables of the Beta function. Recall, e.g., from[15, §1.1] that the
Gamma function�hasno zeros and ismeromorphic inCwith simple poles at 0, −1,−2, ....
Hence the Beta function[15, §1.5]

B(z, w) = �(z)�(w)

�(z + w)

is meromorphic both inzandw, with simple poles atz, w = 0, −1,−2, .... From[15, §1.5]
we have the integral representation

B(z, w) =
∫ 1

0
tz−1(1− t)w−1dt, �(z) > 0, �(w) > 0. (2.3)

In order to obtain a representation valid for generalz, w ∈ C \ Z (compare with the
Pochhammer formula[15, 1.6.(7)]), we follow[16, § 3.4]and consider three sheetsS1,S2
andS3 of the appropriate Riemann surface for the function�z−1(1− �)w−1 (in the variable
�) so that


−� < arg(�) < �, −� < arg(1− �) < �, for � ∈ S1 \ {(−∞, 0] ∪ [1,+∞)} ,

0 < arg(�) < 2�, � < arg(1− �) < 3�, for � ∈ S2 \ {[0, +∞) ∪ [1,+∞)} ,

� < arg(�) < 3�, 0 < arg(1− �) < 2�, for � ∈ S3 \ {(−∞, 0] ∪ (−∞,1]} .

Furthermore we choose a closed contour	 as in Fig.1 where
1, 
2, 
3 are the transition
points between the three sheets. Note that the function�z−1(1− �)w−1 is analytic on	. For
the Beta function we then have

B(z, w) = (1− e2�iz)−1(1− e2�iw)−1
∫
	

�z−1(1− �)w−1 d�, z, w ∈ C \ Z.

(2.4)

Indeed, if�(z) > 0, �(w) > 0 then the path of integration in (2.4) can be deformed via the
usual “shrinking” method in order to approach the interval[0, 1], leading to formula (2.3).
In particular, ifz and/orw is a strictly positive integer, we can obtainB(z, w) by taking
limits in (2.4).
Now we prove our claim that (shifted) Jacobi polynomials with complex parameters are

formal orthogonal polynomials.

Theorem 2.1. Let�, �, �+�+1 ∈ C\{−1,−2, . . .},and consider the(complex)measure
�(�,�) defined by∫

h d�(�,�) = lim
z→�,w→�

(1− e2�iz)−1(1− e2�iw)−1
∫
	

h(�)�z(1− �)w d�.

Then�(�,�) forms a perfect system,with the corresponding nth formal orthogonal polyno-

mial given by the(shifted)Jacobi polynomialP (�,�)
n .
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Fig. 1. The contour	 on the appropriate Riemann surface for�z−1(1− �)w−1.

Proof. From (2.4) we obtain for thekth moment∫
zk d�(�,�)(z) = B(� + 1+ k, � + 1).

The restrictions on the parameters� and� guarantee that the determinant of the moment
matrix,

det(B(� + s + t − 1,� + 1))1� s,t �n =
n∏

�=1

�(� + �)�(� + �)

�(� + � + n + �)

∏
1� s<t �n

(t − s),

is different from zero.A proof for this formula uses Theorem 1 and 2 in[9,10] (the moment
matrix in the non-shifted case can be found in[25, 6.71.5]). Thus�(�,�) forms a perfect
system. Moreover, for 0�m�n − 1 we have, according to (2.1) and (2.4)∫

(1− z)mP
(�,�)
n (z) d�(�,�)(z)

= (� + 1)n

n!
n∑

k=0

(−n)k(� + � + n + 1)k

k!(� + 1)k
B(� + k + 1,� + m + 1)

= (−1)n�(� + n + 1)�(� + m + 1)

�(� + � + n + 1)

n∑
k=0

(−1)n−k

k!(n − k)!
n∏

�=m+2

(� + � + k + �).

The sum on the right-hand side is the divided differencegm,n[0, 1, . . . , n] of the polynomial
gm,n(z) = ∏n

�=m+2(� + � + z + �) of degreen − m − 1. Sincen − m − 1 < n, this is
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equal to 0, which proves that the Jacobi polynomial is a formal orthogonal polynomial with
respect to�(�,�). �

2.2. Formal Wilson polynomials

In [27] Wilson introduced the (formal) Wilson polynomials

pn(z2; a, b, c, d)

= (a + b)n(a + c)n(a + d)n

× 4F3

( −n, a + b + c + d + n − 1, a − z, a + z

a + b, a + c, a + d

∣∣∣∣ 1
)

. (2.5)

By using Whipple’s identities[2, Theorem 3.3.3], one can show that these formal Wilson
polynomials are symmetric in all four complex parametersa, b, c, d. Furthermore, with
some conditions on these four parameters, the polynomials satisfy a complex orthogonality
with respect to the Wilson weight function

w(z; a, b, c, d)

= �(a + z)�(a − z)�(b + z)�(b − z)�(c + z)�(c − z)�(d + z)�(d − z)

�(2z)�(−2z)
.

Suppose that

2a, a + b, a + c, a + d, 2b, b + c, b + d, 2c, c + d, 2d /∈ {0, −1,−2, . . .}, (2.6)

so that the Wilson weight has only simple poles, and that

a + b + c + d /∈ {0, −1,−2, . . .}. (2.7)

Furthermore letC denote the contour obtained by deforming the imaginary axis so as to
separate the increasing sequences of poles ({a+ k}∞k=0, {b + k}∞k=0, {c + k}∞k=0, {d + k}∞k=0)
from the decreasing ones ({−a− k}∞k=0, {−b − k}∞k=0, {−c − k}∞k=0, {−d − k}∞k=0), and
define the Wilson measure�(a,b,c,d) by∫

h d�(a,b,c,d) =
∫
C

h(z2)w(z; a, b, c, d)dz. (2.8)

Wilson [27] proves the complex orthogonality relations∫
pm(z; a, b, c, d)pn(z; a, b, c, d)d�(a,b,c,d)(z) = �m,n2iMn,

where

Mn = 2�n! (a + b + c + d + n − 1)n �(a + b + n)

×�(a + c + n)�(a + d + n)�(b + c + n)�(b + d + n)�(c + d + n)

�(a + b + c + d + 2n)
.

The singleton system�(a,b,c,d) is perfect; this will follow from Lemma3.4below.
In some cases we obtain real orthogonality conditions with respect to positive measures

on the real line[27]. If�(a), �(b), �(c), �(d) > 0 anda, b, c anddare real except possibly
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for conjugate pairs, thenC can be taken to be the imaginary axis and we obtain the real
orthogonality∫ ∞

0
pm(−x2; a, b, c, d)pn(−x2; a, b, c, d)

×
∣∣∣∣�(a + ix)�(b + ix)�(c + ix)�(d + ix)

�(2ix)

∣∣∣∣2 dx = �m,nMn.

Another case is whena < 0 anda + b, a + c, a + d are positive or a pair of complex
conjugates occurs with positive real parts (where the condition 2a /∈ {0, −1,−2, . . .},
following from (2.6), is removable). We then get the same positive continuous weight
function where some positive point masses are added. In these cases we obtain the Wilson
polynomialsWn(z2; a, b, c, d) := pn(−z2; a, b, c, d) (see, e.g.,[17]), which are real when
z2 is real.
Finally in the case that one ofa+b, a+c, a+d is equal to−N +�, withNa nonnegative

integer, one obtains a purely discrete orthogonality after dividing by�(−N + �) and letting
� → 0. Taking the substitutionz → z + a and the change of variables� = a + b − 1,� =
c+d−1, = a+d−1,� = a−d we then find theRacah polynomials up to amultiplicative
constant:

Rn(�(z); �, �, , �) = 4F3

( −n, n + � + � + 1,−z, z +  + � + 1

� + 1,� + � + 1, + 1

∣∣∣∣ 1
)

,

where�(z) = z(z + +�+1)and�+1 = −N or�+�+1 = −N or +1 = −N . (Here
we assume a translation of the conditions (2.6) and (2.7)). The Racah polynomials satisfy
the discrete orthogonality

N∑
k=0

(� + 1)k( + 1)k(� + � + 1)k( + � + 1)k(( + � + 3)/2)k

(−� +  + � + 1)k(−� +  + 1)k(( + � + 1)/2)k(� + 1)kk!
×Rn(�(k); �, �, , �)Rm(�(k); �, �, , �) = 0,

m �= n. Necessary and sufficient conditions for the positivity of the weights are quitemessy.
An example of sufficient conditions is given in[27, (3.5)], namely

� + � + 1 = −N,  + � + 1 > −1, � > −1,  + � + 1 > −�

and either

 + 1 > −N or � + 1 > −N.

The formal Wilson polynomials contain as limiting cases several families of orthogonal
polynomials like Hahn, dual Hahn, Meixner, Krawtchouk, Charlier, continuous Hahn, con-
tinuous dual Hahn, Meixner–Pollaczek, Jacobi, Laguerre and Hermite polynomials[27,
Section 4];[17, Chapter 2]. Together they form the Askey scheme of hypergeometric or-
thogonal polynomials. Moreover, there existq-analogues[17] for all these polynomials.
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2.3. Formal Wilson polynomials as a Jacobi transform

Wenow recall an integral relation between the Jacobi and the formalWilson polynomials.
We also give a short proof which will help us to find explicit expressions for the formal
multiple Wilson polynomials in the next section.

Theorem 2.2(Koornwinder).Suppose that conditions(2.6)and(2.7)hold,and that�(c+
d) > 0, 0< |�(z)| < �(a). Then we have

pn(z2; a, b, c, d) = �n

∫ 1

0
P

(�,�)
n (u)w(�,�)(u)K(u, z; a, b, c, d)du, (2.9)

with � = a + b −1and� = c + d −1, the Jacobi weight functionw(�,�)(u) = u�(1− u)�,
the constant�n = n! �(a + c + n)�(a + d + n) and the kernel(1.5).

Remark 2.3. Koornwinder mentioned this Jacobi transform for theWilson polynomials in
[18, (3.3)]. One can show that our representation coincides with that of Koornwinder by
making suitable parameter changes and the substitution 1− tanh2 s → u. Notice also that
(2.9) is a particular case of a formula due to Meijer[21, p.103].

Proof. By comparing the explicit formulas (2.1) and (2.5) we see that it is sufficient to
prove that, for� ∈ N,∫ 1

0
u�w(a−1,c+d−1)(u)K(u, z; a, 0, c, d)du = (a − z)�(a + z)�

�(a + c + �)�(a + d + �)
.

(2.10)

By definition of the kernel (1.5) we have

K(u, z; a, 0, c, d) = (a − z)�(a + z)� K(u, z; a + �, 0, c, d),

andu�w(a−1,c+d−1)(u) = w(a+�−1,c+d−1)(u). So, by replacinga + � by a, we see that it
remains to show that, for 0< |�(z)| < �(a) and�(c + d) > 0,∫ 1

0
w(a−1,c+d−1)(u)K(u, z; a, 0, c, d)du = 1

�(a + c)�(a + d)
. (2.11)

Euler’s formula gives the symmetryK(u, −z; a + �, 0, c, d) = K(u, z; a + �, 0, c, d). So,
it is enough to prove (2.11) for 0< �(z) < �(a) and�(c + d) > 0.

Denoting the left-hand side of (2.11) by Z, we have by definition of the kernel

Z = 1

�(a − z)�(a + z)�(c + d)

×
∫ 1

0
w(a−z−1,c+d−1)(u) 2F1

(
c − z, d − z

c + d

∣∣∣∣ 1− u

)
du.

In order to change the order of summation and integration,wenotice that, if�(C−A−B) >

0,

lim
y↑1 max

v∈[0,1]

∣∣∣∣ 2F1

(
A, B

C

∣∣∣∣ yv

)
− 2F1

(
A, B

C

∣∣∣∣ v
)∣∣∣∣ = 0,
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which follows by observing that

�(A + k)�(B + k)

�(C + k)�(1+ k)
= kA+B−C−1(1+ O(k−1)), k → ∞,

by Stirling’s formula. Consequently, using the assumptions�(2z) > 0, �(a − z) > 0,
�(c + d) > 0 together with (2.3) we obtain by uniform convergence

Z = 1

�(a − z)�(a + z)�(c + d)

× lim
y↑1

∫ 1

0
w(a−z−1,c+d−1) (u) 2F1

(
c − z, d − z

c + d

∣∣∣∣ y(1− u)

)
du

= lim
y↑1

∞∑
k=0

(c − z)k(d − z)k yk

�(a − z)�(a + z)�(c + d + k)k!
∫ 1

0
w(a−z−1,c+d+k−1) (u) du

= lim
y↑1

1

�(a + z)�(a + c + d − z)
2F1

(
c − z, d − z

a + c + d − z

∣∣∣∣ y
)

.

The assumption on the parameters ensures that�(a + c + d − z − (c − z + d − z)) > 0,
and hence we get from the Gauss formula[2, Theorem 2.2.2];[1, 15.1.20]

Z = 1

�(a + z)�(a + c + d − z)
2F1

(
c − z, d − z

a + c + d − z

∣∣∣∣ 1
)

= 1

�(a + d)�(a + c)
,

as claimed in (2.11). �

3. Formal multiple Wilson as a Jacobi–Piñeiro transform

3.1. Jacobi–Piñeiro with complex parameters

The Jacobi–Piñeiro polynomials are defined by a Rodrigues formula

P
(��,�)

�n (z) = 1

�n! (1− z)−�
r∏

j=1

(
z−�j

dnj

dznj
znj +�j

)
(1− z)|�n|+�, (3.1)

where�n! = ∏r
j=1 nj !. It is well known [23] that, provided that�j > −1,� > −1 and

�i −�j �∈ Z for i �= j , the Jacobi–Piñeiro polynomials aremultiple orthogonal polynomials
of type II with respect to the (positive) Jacobi weightsw(�j ,�), j = 1, . . . , r, on the interval
[0, 1]. Notice that these weights form an AT system, see e.g.[22], and hence we obtain a
perfect system of measures. Similar to Theorem2.1, we show that for complex parameters
we keep formal multiple orthogonal polynomials of type II. Here we use the measures
�(�j ,�) of Theorem2.1which have as support the contour	, but can be reduced to complex
Jacobi weightsw(�j ,�) on the interval[0, 1] in the case�(�j ) > −1,�(�) > −1.

Theorem 3.1. Let �j , �, �j + � ∈ C \ {−1,−2, . . .} and�i − �j �∈ Z for i �= j . Then
the measures�(�j ,�), j = 1, . . . , r, defined as in Theorem2.1, form a perfect system.
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The corresponding formal multiple orthogonal polynomial of typeII with respect to the
multi-index�n is given by(3.1).

Proof. From Theorem 1 and 2 in[9,10] we obtain for the determinant of the matrix of
moments (1.2) the expression

D
��,�
�n =


 |�n|∏

�=1

�(� + �)




 r∏

j=1

nj∏
�=1

�(�j + �)

�(�j + � + �n + �)




×

 r∏

j=1

∏
1� s<t �nj

(t − s)




 ∏

1� i<j � r

ni∏
s=1

nj∏
t=1

(�j − �i + t − s)


 .

For our choice of parameters, this expression is different from zero, and hence every multi-
index is normal.
Our claim on the (formal) orthogonality of Jacobi–Piñeiro polynomials will be shown by

induction onr. For r = 1, Eq. (3.1) reduces to (2.1), and the claim follows from Theorem
2.1. For r >1, we observe first that, by the Rodrigues formula (3.1),

P
(��,�)

�n (z) = z−�1(1− z)−�

n1!
dn1

dzn1

(
z�1+n1(1− z)�+n1P

(��(1),�+n1)

�n(1) (z)

)
, (3.2)

where we denote by�v (j) the vector�v without the jth component. By the induction hy-

pothesis,P (��(1),�+n1)

�n(1) is a polynomial of degree|�n| − n1, and thus there exist scalarsc�

with

P
(��(1),�+n1)

�n(1) (z) =
|�n|−n1∑

�=0

c� P
(�1+n1,�+n1)

� (z).

From the Rodrigues formula forr = 1 and (3.2) we then conclude

P
(��,�)

�n (z) =
|�n|−n1∑

�=0

(
n1 + �

�

)
c� P

(�1,�)

�+n1
(z),

which implies thatP (��,�)

�n is a polynomial of degree|�n| for which∫
zmP

(��,�)

�n (z) d�(�1,�)(z) = 0, 0�m�n1 − 1,

by Theorem2.1. The other orthogonality conditions are obtained by observing that (3.1)
remains invariant if one changes the order in the product.�

With help of the Leibniz rule applied to the Rodrigues formula, the authors in[11] derive
for r = 2 an explicit expression in terms of 2 sums. We now give a generalization of this



166 B. Beckermann et al. / Journal of Approximation Theory 132 (2005) 155–181

formula forr �2, using the notation

Mp;m
q,�n

( �f ; �g1 : · · · : �gm

��; ��1 : · · · : ��m

∣∣∣∣∣ �z
)

:=
n1∑

k1=0

· · ·
nr∑

kr=0︸ ︷︷ ︸
r sums

∏p
�=1 (f�)|�k|∏q
�=1 (��)|�k|

×
∏m

i=1 (gi,1)|�k|−k1
(gi,2)|�k|−k1−k2

· · · (gi,r−1)kr∏m
i=1 (�i,1)|�k|−k1

(�i,2)|�k|−k1−k2
· · · (�i,r−1)kr

r∏
j=1

(−nj )kj

z
kj

j

kj ! , (3.3)

where �k = (k1, . . . , kr ), �n ∈ Nr
0 = (N ∪ {0})r , �g1, . . . , �gm, ��1, . . . , ��m ∈ Cr−1 and

�f ∈ Cp, �� ∈ Cq . We also give in (3.5) another new explicit expression for the formal
Jacobi–Piñeiro polynomials which reduces to (2.2) if r= 1.

Theorem 3.2. Let �e = (1, . . . ,1) be a multi-index of length r ands(�n) = (n1, n1 +
n2, . . . , |�n|).Denote by�v (j) the vector�v without the jth component.For the Jacobi–Piñeiro
polynomials we have the hypergeometric representations

P
(��,�)

�n (z)

= (�� + �e)�n
�n!

× M1;2
1,�n

(
(�1 + � + n1 + 1);(�� + �n + �e)(r) : (�� + s(�n) + (� + 1)�e)(1)

(�1 + 1);(�� + �e)(1) : (�� + s(�n) + (� + 1)�e)(r)

∣∣∣∣∣ z �e
)

(3.4)

and

P
(��,�)

�n (z) = (�� + �e)�n
�n! (1− z)−�

r+1Fr

( �� + �n + �e, −� − |�n|
�� + �e

∣∣∣∣ z
)

, (3.5)

where�n! = ∏r
j=1 nj ! and(�� + �e)�n = ∏r

j=1(�j + 1)nj
.

Proof. We prove (3.4) and (3.5) by induction onr. For r = 1, Eqs. (3.4) and (3.5) reduce
to (2.1) and (2.2), respectively.
In the caser �2, we use formula (3.2), where the induction hypothesis enables us to

express the right-hand polynomialP
(��(1),�+n1)

�n(1) as a hypergeometric sum. After exchanging
the order of summation and differentiation (which is only possible for|z| < 1 in case of
formula (3.5)), we apply the formulas

z−�1(1− z)−� dn1

dzn1

(
z�1+n1+|�k(1)|(1− z)�+n1

)

= (�1 + 1)n1

n1∑
k1=0

(�1 + � + n1 + 1)|�k|
(�1 + 1)|�k|

(�1 + n1 + 1)|�k|−k1

(�1 + � + n1 + 1)|�k|−k1

(−n1)k1 z|�k|

k1!
(3.6)
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and

z−�1 dn1

dzn1
z�1+n1+k = (�1 + 1)n1(�1 + n1 + 1)k

(�1 + 1)k
zk (3.7)

to obtain the right-hand expressions of (3.4), and (3.5), respectively. It remains to prove
claims (3.6) and (3.7), the second one being obvious. We observe that the left-hand side of
(3.6) can be transformed using the Rodrigues formula forr = 1 and (2.1), leading to the
expression

z|�k(1)|(�1 + |�k(1)| + 1)n1 2F1

(
−n1, �1 + |�k(1)| + � + n1 + 1

�1 + |�k(1)| + 1

∣∣∣∣∣ z
)

= (�1 + |�k(1)| + 1)n1

n1∑
k1=0

(−n1)k1(�1 + |�k(1)| + � + n1 + 1)k1

(�1 + |�k(1)| + 1)k1

z|�k|

k1!

= (�1 + 1)n1

n1∑
k1=0

(�1 + � + n1 + 1)|�k|
(�1 + 1)|�k|

(�1 + n1 + 1)|�k|−k1

(�1 + � + n1 + 1)|�k|−k1

(−n1)k1z
|�k|

k1! ,

as claimed in (3.6). �

In the above proof we have shown implicitly that the right hand-side of (3.5) is a poly-
nomial of degree� |�n| in z.

Multiple orthogonal polynomials satisfy a recurrence relation of orderr+1, see, e.g.,[20,
§24];[3].With the explicit formula (3.4) it is possible to compute the recurrence coefficients
by comparing the highest coefficients in the recurrence relation, see[4,11] for r = 2.

3.2. Formal multiple Wilson polynomials

We now considerr Wilson weights

w(·; a, bj , c, d), j = 1, . . . , r, bi − bj �∈ Z, i �= j, (3.8)

defined as in (1.3), that is, we change only one parameter (recall the symmetry of the
Wilson weights in all four parameters). As in the scalar case, which is the family of Wilson
polynomials, we suppose that forj = 1, . . . , r

2a, a + bj , a + c, a + d, 2bj , bj + c, bj + d, 2c, c + d, 2d /∈ {0, −1,−2, . . .},
(3.9)

so that ther Wilson weights have only simple poles, and that

a + bj + c + d /∈ {0, −1,−2, . . .}. (3.10)

As in the scalar case, we write�(a,bj ,c,d) for the resulting measures, where it is possible to
choosea joint contourCwhich is the imaginaryaxisdeformedsoas to separate the increasing
sequencesofpoles ({a+k}∞k=0, {b1+k}∞k=0, . . . , {br+k}∞k=0, {c+k}∞k=0, {d+k}∞k=0) from the
decreasingones ({−a−k}∞k=0, {−b1−k}∞k=0, . . . , {−br−k}∞k=0, {−c−k}∞k=0, {−d−k}∞k=0).
Let usshow that the (possibly complex)Wilsonmeasures�(a,bj ,c,d) formaperfect system.

The corresponding multiple orthogonal polynomials will then be referred to as formal
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multiple Wilson polynomials. A basic observation in what follows is that, under some
additional conditions, the formal multiple Wilson polynomials can be written as a Jacobi–
Piñeiro transform, similar to (2.9).

Theorem 3.3. Suppose that(3.9)and(3.10)hold and thatbi − bj �∈ Z, i �= j . The Wilson
measures�(a,bj ,c,d), j = 1, . . . , r, then form a perfect system.Furthermore,if �(a) > 0
and�(c +d) > 0, the formal multipleWilson polynomial with multi-index�n can be written
as

p�n(z2; a, �b, c, d) = ��n
∫ 1

0
P

(��,�)

�n (u)w(a−1,�)(u)K(u, z; a, 0, c, d)du, (3.11)

for 0 < |�(z)| < �(a), where�� = (a + b1 − 1, . . . , a + br − 1) = (a − 1)�e + �b, with
�e = (1, . . . ,1) ∈ Rr , and� = c + d − 1. The normalizing constant��n = �n! �(a + c +
|�n|)�(a + d + |�n|) is chosen so that it corresponds with(2.9) in the caser = 1 and the
kernelK(u, z; a, b, c, d) is defined as in(1.5).

Before we prove this theorem we need some technical lemmas.

Lemma 3.4. A system of r measures�1, . . . , �r is perfect if and only if,for every multi-
index�n, there exists a polynomialP�n of exactly degree|�n| such that∫

P�n(z)zm d�j (z) = 0, 0�m�nj − 1, j = 1, . . . , r, (3.12)

and ∫
P�n(z)znj d�j (z) �= 0, j = 1, . . . , r. (3.13)

In this case,P�n is the(up to normalization unique)multiple orthogonal polynomial of type
II with respect to�n.

Proof. Suppose first that�1, . . . , �r is perfect, and take asP�n the multiple orthogonal
polynomial of type II with respect to�n. Then it only remains to verify (3.13). Suppose the
contrary, that is,

∫
P�n(z)znjd�j (z) = 0 for somej. ThenP�n is also a multiple orthogonal

polynomial of type II with respect to�n + �ej , in contrast to the normality of the multi-index
�n + �ej . Here�ej is thejth unit vector inRr .
We will prove the other implication of this lemma by showing that every�n is normal by

induction on the length|�n|. The multi-index�0 is always normal, suppose therefore that�n is
of length�1, with itsjth component strictly greater than 0. LetR�n be amultiple orthogonal
polynomial for�n. If R �n would have degree strictly less than|�n|, then it would be a multiple
orthogonal polynomial for the multi-index�n − �ej with length |�n| − 1. By normality of
�n − �ej we then have that there exists a nonzero constantc so thatR�n = cP�n−�ej

. Thus∫
R�n(z)znj −1d�j (z) �= 0 by (3.13), in contradiction to the orthogonality relation (3.12) for

R�n. As a consequence,R�n has the precise degree|�n|, and thus�n is normal. �
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Lemma 3.5. Suppose that the singleton systems�j form perfect systems forj = 1, . . . , r,

withcorrespondingorthogonalpolynomials{P (j)
n }n.Then thesystemof rmeasures�1, . . . , �r

is perfect if and only if,for every multi-index�n, there exists a polynomialP�n and scalars
c

(j)

�n,k
so that

P�n(z) =
|�n|∑

�=nj

c
(j)

�n,�
P

(j)
� (z), c

(j)

�n,nj
�= 0, c

(j)

�n,|�n| �= 0, j = 1, . . . , r. (3.14)

In this case,P�n is the(up to normalization unique)multiple orthogonal polynomial of type
II with respect to�n.

Proof. If �n is normal andP�n is the corresponding multiple orthogonal polynomial, then
(3.14) follows by taking

c
(j)

�n,�
=

∫
P�n(z)P

(j)
� (z) d�j (z)∫ (

P
(j)
� (z)

)2
d�j (z)

, (3.15)

where we observe that the denominator is not zero according to (3.13) for the singleton
system�j . In addition,c(j)

�n,�
= 0 for � < nj by (3.12),c(j)

�n,nj
�= 0 by (3.13), andc(j)

�n,|�n| �= 0.
Conversely, (3.14) plus the perfectness of the singleton system�j implies (3.12),(3.13),

and hence the system�1, . . . , �r is perfect by Lemma3.4. �

We now prove Theorem3.3 by showing that (the analytic extension of) the integral
expression (3.11) is a possible candidate for a formal multiple Wilson polynomial.

Proof of Theorem 3.3. According to assumptions (3.9) and (3.10) of Theorem3.3, we
find that�j , �, �j + � + 1 ∈ C \ {−1,−2, . . .}, j = 1, . . . , r, and�i − �j �∈ Z whenever
i �= j . It follows from Theorem3.1that the Jacobi–Piñeiro system�(�j ,�), j = 1, . . . , r, is
perfect. From Lemma3.5we may conclude that there exist scalarsc

(j)

�n,�
so that

P
(��,�)

�n (z) =
|�n|∑

�=nj

c
(j)

�n,�
P

(�j ,�)

� (z), c
(j)

�n,nj
�= 0, c

(j)

�n,|�n| �= 0,

j = 1, . . . , r. From, e.g., (3.4)wesee that Jacobi–Piñeiro polynomials are rational functions
in each of the parameters�j or �. Taking into account (2.4) and (3.15), we may conclude

that any of the coefficientsc(j)

�n,�
is a meromorphic function in each of the parameters�j or

�. We now introduce

q�n(z2; a, �b, c, d) = ��n
∫ 1

0
P

(��,�)

�n (u)w(a−1,�)(u)K(u, z; a, 0, c, d)du.
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This function is well defined for 0< |�(z)| < �(a) if �(a) > 0 and�(c + d) > 0.
However, using (2.9), we obtain for everyj = 1, . . . , r that

q�n(z2; a, �b, c, d) = ��n
|�n|∑

�=nj

c
(j)

�n,�

∫ 1

0
P

(�j ,�)

� (u)w(�j ,�)(u)K(u, z; a, bj , c, d)du,

=
|�n|∑

�=nj

�n!
�!

�(a + c + |�n|)�(a + d + |�n|)
�(a + c + �)�(a + d + �)

c
(j)

�n,�
p�(z2; a, bj , c, d),

and thus

q�n(z2; a, �b, c, d) =
|�n|∑

�=nj

�n!
�! (a + c + �)|�n|−� (a + d + �)|�n|−�c

(j)

�n,�
p�(z2; a, bj , c, d)

=
|�n|∑

�=nj

d
(j)

�n,�
p�(z2; a, bj , c, d). (3.16)

Observing that the expressions on the right-hand side of (3.16) are polynomials inz and
meromorphic in any of the parametersa, �b, c, d, we see that the right-hand expression of
(3.16) is well defined and independent ofj for any choice ofzand the parametersa, �b, c, d,
as long as (3.9) and (3.10) hold andbi − bj �∈ Z, i �= j . Moreover, the new coefficients

d
(j)

�n,nj
andd

(j)

�n,|�n| are different from zero.

Thus,q�n(·; a, �b, c, d) defined by (3.16) is a suitable candidate for a formal multiple
Wilson polynomial, and the system of Wilson measures is perfect by Lemma3.5. �

We now want to deduce explicit expressions for the formal multipleWilson polynomials
based on the explicit expressions (3.4) and (3.5) for the Jacobi–Piñeiro polynomials. Here
we use the Kampé de Fériet series[24]

F
p:p1;p2
q:q1;q2

( �f : �g; �h
�� : ��; ��

∣∣∣∣∣ z1, z2

)

:=
∞∑

k=0

∏p
�=1 (f�)k∏q
�=1(��)k

k∑
j=0

∏p1
�=1 (g�)k−j

∏p2
�=1 (h�)j∏q1

�=1 (��)k−j

∏q2
�=1 (��)j

z
k−j
1

(k − j)!
z

j
2

j ! , (3.17)

which are a generalization of the 4Appell series in 2 variables. Notice that, forp = q = 0,
the Kampé de Fériet series is a product of two hypergeometric series. Also, in the case
r = 2, our functionsMp;m

q,�n defined in (3.3) are (finite) Kampé de Fériet series

Mp;m
q,(n1,n2)

( �f ; g1 : · · · : gm

��;�1 : · · · : �m

∣∣∣∣∣ (z1, z2)

)

= F
p:1;m+1
q:0;r

( �f : (−n1); (−n2, g1, . . . , gm)

�� : (); (�1, . . . , �m)

∣∣∣∣∣ z1, z2

)
. (3.18)

In what follows the parameters in the Kampé de Fériet series will always be chosen so that
the sum in (3.17) is finite, and hence we are not concerned with convergence problems.
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Corollary 3.6. Let�e = (1, . . . ,1)beamulti-indexof length r,s(�n) = (n1, n1+n2, . . . , |�n|)
and
j = a + bj + c + d − 1, j = 1, . . . , r. Denote by�v (j) the vector�v without the jth
component.For the multiple Wilson polynomials we have the hypergeometric representa-
tions

p�n(z2; a, �b, c, d) = (a�e + �b)�n(a + c)|�n|(a + d)|�n|

× M3;2
3,�n

(
(a − z, a + z, 
1 + n1); (a�e + �b + �n)(r) : (�
 + s(�n))(1)

(a + c, a + d, a + b1); (a�e + �b)(1) : (�
 + s(�n))(r)

∣∣∣∣∣ �e
)

(3.19)

and

p�n(z2; a, �b, c, d)

= (a�e + �b)�n(a + c)|�n|(a + d)|�n|

× F
2:1;r+1
2:0;r

(
(a − z, a + z) : (c+d −1);(a�e+ �b+ �n, 1−c−d − |�n|)

(a + c, a + d) : (); (a�e + �b)

∣∣∣∣∣ 1,1

)
,

(3.20)

where(a�e + �b)�n = ∏r
j=1 (a + bj )nj

.

Proof. First note that(1− z)−� = ∑∞
�=0(�)l

z�

�! , which converges in the unit disk, so that
expression (3.5) can then be written as

P
(��,�)

�n (z) = (�� + �e)�n
�n! F

0:1;r+1
0:0;r

( − : (�); (�� + �n + �e, −� − |�n|)
− : −; (�� + �e)

∣∣∣∣ z, z

)
. (3.21)

Then start from the Jacobi–Piñeiro transform (3.11) and replace the Jacobi–Piñeiro poly-

nomialP (��,�)

�n by its explicit expressions (3.4) and (3.21), respectively. Since the sums are
finite, we can interchange the integral with the sums. Applying (2.10) then completes the
proof. �

Remark 3.7. For r = 2, we may apply (3.18) to (3.19), leading to a representation as a
Kampé de Fériet series of typeF 3:1;3

3:0;2 . It seems to be non-trivial to derive from this formula

the representation as a Kampé de Fériet series of typeF
2:1;3
2:0;2 as in (3.20).

4. Limit relations

In this sectionwe consider some cases inwhich the orthogonality conditions of the formal
multiple Wilson polynomials reduce to orthogonality conditions with respect to a positive
measure on the real line.We then recover multipleWilson andmultiple Racah polynomials.
Next we use the limit relations between the orthogonal polynomials in theAskey table[17]
to obtain somenewexamples ofmultiple orthogonal polynomials of type II and someknown
examples. In particular we look at what happens with the explicit expressions (3.19) and
(3.20) after applying these limit relations, where we use the notation�e = (1, . . . ,1) ∈ Rr

ands(�n) = (n1, n1 + n2, . . . , |�n|). Most of these examples are known to be AT systems,
see[5,11], which implies that every multi-index is normal .
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4.1. Multiple Wilson

With some restrictions on the parameters the orthogonality conditions of the formal
multipleWilson polynomials reduce to real orthogonality conditionswith respect to positive
measures on the real line. Letbj > 0, j = 1, . . . , r, bi − bj �∈ Z wheneveri �= j ,
�(a), �(c), �(d) > 0 anda, c, d be real except for a conjugate pair. In that case the
imaginary axis can be taken as the contourC. The multiple Wilson polynomials

W�n(z2; a, �b, c, d) := p�n(−z2; a, �b, c, d) (4.1)

then satisfy the real orthogonality relations∫ ∞

0
(x2)m W�n(x2; a, �b, c, d)

∣∣∣∣�(a + ix)�(bj + ix)�(c + ix)�(d + ix)

�(2ix)

∣∣∣∣2 dx = 0,

0�m�nj − 1, j = 1, . . . , r. If a < 0, a + bj > 0, j = 1, . . . , r, anda + c, a + d are
positive or a pair of complex conjugates with positive real parts, then we obtain the same
orthogonality conditions but with some extra positive point masses.

4.2. Multiple Racah

As in the scalar case it is also possible to obtain a purely discrete orthogonality. The
multiple Racah polynomialsR�n(·; ��, �, , �), where we only change the parameter� with
�i − �j �∈ Z wheneveri �= j , satisfy the discrete orthogonality

N∑
k=0

(�j + 1)k( + 1)k(� + � + 1)k( + � + 1)k(( + � + 3)/2)k

(−�j +  + � + 1)k(−� +  + 1)k(( + � + 1)/2)k(� + 1)kk!
×R�n(�(k); ��, �, , �) (�(k))m = 0,

0�m�n − 1, j = 1, . . . , r, where

�(z) = z(z +  + � + 1) and � + � + 1 = −N or  + 1 = −N.

They can be found by applying the substitutionz → z + a and the change of variables
�j = a + bj − 1,� = c + d − 1, = a + d − 1,� = a − d on the polynomials
p�n(z2; a, �b, c, d)/((a�e + �b)�n(a + c)|�n|(a + d)|�n|) and we need a translation of conditions
(3.9) and (3.10). For the multiple Racah polynomials we then have the expressions

R�n(�(z); ��, �, , �)

= M3;2
3,�n

(
(−z, z +  + � + 1,
1 + n1); (�� + �n + �e)(r) : (�
 + s(�n))(1)

(� + � + 1, + 1,�1 + 1);(�� + �e)(1) : (�
 + s(�n))(r)

∣∣∣∣∣ �e
)

with 
j = �j + � + 1, j = 1, . . . , r, and

R�n(�(z); ��, �, , �)

= F
2:1;r+1
2:0;r

(
(−z, z +  + � + 1) : (�); (�� + �n + �e, −� − |�n|)

(� + � + 1, + 1) : (); (�� + �e)

∣∣∣∣ 1,1

)
.
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An example of sufficient conditions to have positive weights is

� + � + 1 = −N,  + � + 1 > −1, �j > −1,  + � + 1 > −�j ,

j = 1, . . . , r, and either

 + 1 > −N or � + 1 > −N.

Remark 4.1. Recall that the Wilson weight is symmetric in the four parameters so that
we can switch these parameters in the change of variables. We then obtain multiple Racah
polynomials where we change other parameters. For example we have multiple Racah
polynomialsR�n(·; �, ��, , �)whereweonlychange theparameter� in theweights (�i−�j �∈
Z wheneveri �= j ). In that case we have that� + 1 = −N or  + 1 = −N . As a second
example it is possible to change the parameters�,  and� in such a way that�j + j and
�j +�j do not change andi − j �∈ Z wheneveri �= j . Here we assume that�+1 = −N

or �j + �j + 1 = −N for every j. We then denote these multiple Racah polynomials by

Rn(·; �, ��, �, ��). However, this does not give another family of polynomials because

R�n(�(z); �, ��, , �) = R�n(�(z); �� + ��e, � − �, , �) (4.2)

and

R�n(�(z); �, ��, �, ��) = R�n(�(z); �, � + �j − j , �, j + �j − �). (4.3)

These relationswill help us in some of the examples of the subsections below to find explicit
expressions for the polynomials.

4.3. Some new examples

4.3.1. Multiple continuous dual Hahn
Letbi −bj �∈ Z wheneveri �= j . Themultiple continuous dual Hahn polynomials satisfy

the orthogonality conditions of the multiple Wilson polynomials where we letd → +∞
(after dividing by�(d)2). Similarly we obtain real orthogonality conditions with respect
to a positive measure ifbj > 0 anda, c are positive or a pair of complex conjugates with
positive real parts. We then denote the�nth multiple continuous dual Hahn polynomial by
S�n(·; a, �b, c). These polynomials satisfy the orthogonality conditions∫ ∞

0
(x2)m S�n(x2; a, �b, c)

∣∣∣∣�(a + ix)�(bj + ix)�(c + ix)

�(2ix)

∣∣∣∣2 dx = 0,

0�m�nj − 1, j = 1, . . . , r. It is clear that

S�n(z2; a, �b, c) = lim
d→+∞

W�n(z2; a, �b, c, d)

(a + d)|�n|
(4.4)

so, by

lim
�→+∞

(c + d − 1)k−j (1− c − d − |�n|)j

(a + d)k

= (−1)j , 0�j �k,
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the multiple continuous dual Hahn polynomials have the explicit expressions

S�n(z2; a, �b, c)

= (a�e + �b)�n(a + c)|�n| M2;1
2,�n

(
(a − iz, a + iz); (a�e + �b + �n)(r)

(a + c, a + b1); (a�e + �b)(1)

∣∣∣∣∣ �e
)

,

= (a�e + �b)�n(a + c)|�n| F
2:0;r
1:0;r

(
(a − iz, a + iz) : (); (a�e + �b + �n)

(a + c) : (); (a�e + �b)

∣∣∣∣∣ 1,−1

)
.

4.3.2. Multiple dual Hahn
Considerj , �j , j = 1, . . . , r, so thatj , �j > −1 or j , �j < −N for eachj and that

j +�j is independent ofj. Suppose also thati −j �∈ Zwheneveri �= j . Themultiple dual

Hahn polynomials, denoted byR�n(·; �, ��, N), satisfy the system of discrete orthogonality
conditions

N∑
k=0

(2k + j + �j + 1)(j + 1)k(−N)kN !
(−1)k(k + j + �j + 1)N+1(�j + 1)kk! R�n(�(k); �, ��, N) (�(k))m = 0,

0�m�n − 1, j = 1, . . . , r, where�(z) = z(z +  + � + 1). The multiple dual Hahn
polynomials are related to the multiple Racah polynomials by

R�n(�(z); �, ��, N)

= lim
�→+∞ R�n(�(z); �, −�� − (N + 1)�e, �, ��) (4.5)

= lim
�→+∞ R�n(�(z); �, � − j − �j − N − 1,�, j + �j − �), (4.6)

where we use (4.3). Note that

lim
�→+∞

(� − j − �j − N − 1)k−j (−� + j + �j + N + 1− |�n|)j

(� + 1)k
= (−1)j ,

0�j �k, so that the multiple dual Hahn polynomials then have the explicit expressions

R�n(�(z); �, ��, N) = M2;1
2,�n

(
(−z, z + j + �j + 1);(� + �n + �e)(r)

(−N, 1 + 1);(� + �e)(1)

∣∣∣∣∣ �e
)

= F
2:0;r
1:0;r

(
(−z, z + j + �j + 1) : (); (� + �n + �e)

(−N) : (); (� + �e)

∣∣∣∣ 1,−1

)
.

4.3.3. Multiple Meixner–Pollaczek

The multiple Meixner–Pollaczek polynomialsP (�)

�n (·; ��) are multiple orthogonal poly-

nomials (of type II) associated with the system of weightse(2�j −�)x |�(� + ix)|2 on the
positive real axis, where� > 0, 0< �j < �, j = 1, . . . , r, and the�1, . . . , �r are differ-
ent. These weights form an AT system, see[22, p.141]. The multiple Meixner–Pollaczek
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polynomials satisfy the conditions∫ ∞

0
xm P

(�)

�n (x; ��)e(2�j −�)x |�(� + ix)|2dx = 0, 0�m�nj − 1,

j = 1, . . . , r. Similar as[17, (2.3.1)]it is easy to check that

P
(�)

�n (z; ��) = lim
t→+∞

S�n((z − t)2; � + it, t cot ��, � − it)

(t csc��)�n �n! , (4.7)

wheret cot �� = (t cot �1, . . . , t cot�r ) andt csc�� = (t csc�1, . . . , t csc�r ). The mul-
tiple Meixner–Pollaczek polynomials then have the explicit expression

P
(�)

�n (z; ��) = (2�)|�n|
∏r

j=1 einj �j

�n! M1;0
1,�n

(
(� + iz); −

(2�); −
∣∣∣∣ �e − e−2i ��

)
,

wheree−2i �� = (e−2i�1, . . . , e−2i�r ). Herewedonot haveaKampédeFériét representation
such as in (3.20).

4.3.4. Formal multiple continuous Hahn
Similar as in[17, (2.1.2)]we can use the limit relation

P�n(z; a, �b, c, d) = lim
t→∞

p�n((z + t)2; a − t, �b + t �e, c − t, d + t)

(a + c − 2t)|�n| �n! (4.8)

in order to find the formal continuousHahn polynomials. They have the explicit expressions

P�n(z; a, �b, c, d)

(a�e + �b)�n(a + d)|�n|

= M2;2
2,�n

(
(a + z, 
1 + n1); (a�e + �b + �n)(r) : (�
 + s(�n))(1)

(a + d, a + b1); (a�e + �b)(1) : (�
 + s(�n))(r)

∣∣∣∣∣ �e
)

= F
1:1;r+1
1:0;r

(
(a + z) : (c + d − 1);(a�e + �b + �n, 1− c − d − |�n|)

(a + d) : (); (a�e + �b)

∣∣∣∣∣ 1,1

)
,

where
j = a +bj + c +d −1,j = 1, . . . , r. If the parameters satisfy (3.9) and (3.10) and
bi − bj �∈ Z wheneveri �= j , then these polynomials satisfy the orthogonality conditions∫

C
P�n(z; a, �b, c, d)�(a + z)�(bj − z)�(c + z)�(d − z)zm dz = 0, (4.9)

0�m�nj −1,j = 1, . . . , r, whereC is a contour which is the imaginary axis deformed so
as to separate the increasing sequences of poles ({b1+ k}∞k=0, . . . , {br + k}∞k=0, {d + k}∞k=0)
from the decreasing ones ({−a− k}∞k=0, {−c − k}∞k=0).

Remark 4.2. In the scalar case (r= 1) it is possible to obtain real orthogonality relations
with respect to a positive measure if we suppose�(a), �(b), �(c), �(d) > 0 anda = b̄,
c = d̄. This is not possible in this multiple case. For that one needs another family of
multiple continuous Hahn polynomials in which one changes both the parametersa andb.
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4.4. Some classical discrete multiple orthogonal polynomials

In this section we obtain hypergeometric formulas for the classical discrete examples of
multiple orthogonal polynomials of type II, introduced in[5], which are all examples ofAT
systems. In particular we use the limit relations between these polynomials and the Racah
polynomials[17]. TheirMp;r

q,�n representation is already known in the casesr = 1,2.Where
it exists, the explicit expression in terms of a Kampé de Fériét series is new. We denote by
�k the Dirac measure at the pointk.

4.4.1. Multiple Hahn
These multiple orthogonal polynomials (of type II) satisfy orthogonality conditions with

respect tomhypergeometric distributions

�j =
N∑

k=0

(�j + 1)k

k!
(� + 1)N−k

(N − k)! �k, �j > −1, � > −1,

�i − �j /∈ {0, 1, . . . , N − 1}, i �= j , on the integers 0, . . . , N . They can be found from the
multiple Racah polynomials taking + 1 = −N and� → +∞, so that

Q
��;�;N
�n (z) = M2;2

2,�n

(
(−z, 
1 + n1); (�� + �n + �e)(r) : (�
 + s(�n))(1)

(−N, �1 + 1);(�� + �e)(1) : (�
 + s(�n))(r)

∣∣∣∣∣ �e
)

= F
1:1;r+1
1:0;r

(
(−z) : (�); (�� + �n + �e, −� − |�n|)

(−N) : (); (�� + �e)

∣∣∣∣ 1,1

)
,

where
j = �j +�+1,j = 1, . . . , r. Changing only the parameter� does not give another

family of polynomials because ofQ�;��;N
�n (x) = C Q

��;�;N
�n (N − x) with C some constant

(depending on�n, � and��). However, we will need an explicit formula in powers ofx for
these polynomials to obtain multiple Meixner I and multiple Laguerre II. Using (4.2) and
the limits we mentioned above, we find that

Q
�;��;N
�n (z) = M2;2

2,�n

(
(−z, � + �1 + n1 + 1);(�� + s(�n) + (� + 1)�e)(1)

(−N, � + 1);(�� + s(�n) + (� + 1)�e)(r)

∣∣∣∣∣ �e
)

.

4.4.2. Multiple Meixner I
In this case we considerr negative binomial distributions

�j =
∞∑

k=0

(�)k ck
j

k! �k, 0 < cj < 1, � > 0,

with all thecj , j = 1 . . . , r, different. We get these polynomials from the multiple Hahn

polynomialsQ�;��;N
�n replacing� = � − 1, �j = N

1−cj

cj
and lettingN → +∞. We then
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obtain

M
�;�c
�n (z) = M1;0

1,�n

(
(−z); ()

(�); ()

∣∣∣∣ �c − �e
�c
)

,

where �c−�e
�c =

(
c1−1

c1
, . . . , cr−1

cr

)
.

4.4.3. Multiple Meixner II
In the case of multiple Meixner II polynomials we only change the parameter� in the

negative binomial distributions, so that

�j =
∞∑

k=0

(�j )k ck

k! �k, 0 < c < 1, �j > 0,

with �i − �j �∈ Z wheneveri �= j . Taking�j = �j − 1,� = N 1−c
c

and lettingN → +∞
in the explicit formulas for the multiple Hahn polynomialsQ

��;�;N
�n , we obtain

M
��;c
�n (z) = M1;1

1,�n

(
(−z); (�� + �n)(r)

(�1); (��)(1)

∣∣∣∣∣ c − 1

c
�e
)

= F
1:0;r
0:0;r

(
(−z) : (); (�� + �n)

() : (); (��)

∣∣∣∣∣ c − 1

c
,
1− c

c

)
.

4.4.4. Multiple Kravchuk
These polynomials satisfy the orthogonality conditions (1.1) with ther binomial distri-

butions

�j =
N∑

k=0

(
N

k

)
pk

j (1− pj )N−k�k, 0 < pj < 1,

where all thepj , j = 1 . . . , r, are different. They are related to the multiple Hahn polyno-

mialsQ
��;�;N
�n replacing� = t , �j → pj

1−pj
t and lettingt → +∞. We then get

K
�p;N
�n (z) = M1;0

1,�n

(
(−z); ()

(−N); ()

∣∣∣∣ 1�p
)

,

where 1
�p =

(
1

p1
, . . . , 1

pr

)
.

4.4.5. Multiple Charlier
In the case of multiple Charlier we considerr Poisson distributions

�j =
∞∑

k=0

ak
j

k! �k, aj > 0,
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with all theaj , j = 1 . . . , r, different. The corresponding multiple orthogonal polynomials
(of type II) can be found from the multiple Meixner I polynomials takingcj = aj

aj +� and

letting� → +∞. The multiple Charlier polynomials then have the explicit expression

C �a
�n(z) = M1;0

0,�n

(
(−z); ()

(); ()

∣∣∣∣− 1

�a
)

,

where1
�a =

(
1
a1

, . . . , 1
ar

)
.

4.5. Some classical continuous multiple orthogonal polynomials

In this section we recall some classical continuous examples of multiple orthogonal
polynomials of type II where the measures (or weight functions) form an AT system and
obtainhypergeometric formulas for thesepolynomials.TheirMp;r

q,�n representation is already
known in the casesr = 1,2. The explicit expression in terms of a Kampé de Fériét series is
new (if it exists). For an overview of these polynomials and their properties we recommend
[4,11].

4.5.1. Jacobi–Piñeiro
In Section3.1 we recalled the Jacobi–Piñeiro polynomialsP

��,�
�n , which, in the case

�j , � > −1, are the multiple orthogonal polynomials (of type II) with respect to the Jacobi
weightsw�j ,�(x) = x�j (1− x)�, j = 1, . . . , r, on the interval[0, 1]. Here�i − �j �∈ Z

wheneveri �= j . For the explicit formulas see Theorem3.2. Similar as in the multiple Hahn

case we have thatP (�,��)

�n (z) = (−1)|�n|P (��,�)

�n (1 − z). So, changing only the parameter�
does not give another family of polynomials. For these polynomials we have

P
(�,��)

�n (z)

= lim
N→+∞

(� + 1)|�n|
�n! Q

�;��:N
�n (Nz)

= (� + 1)|�n|
�n! M1;1

1,�n

(
(� + �1 + n1 + 1);(�� + s(�n) + (� + 1)�e)(1)

(� + 1);(�� + s(�n) + (� + 1)�e)(r)

∣∣∣∣∣ z�e
)

.

4.5.2. Multiple Laguerre I
The multiple Laguerre I polynomialsL��

�n are orthogonal on[0, +∞) with respect to the
r weightswj (x) = x�j e−x , where�j > −1, j = 1, . . . , r, and�i − �j �∈ Z whenever

i �= j . They can be found from the Jacobi–Piñeiro polynomialsP
��,�
�n substitutingz → z

�
and letting� → ∞. We then obtain the hypergeometric expressions

L��
�n(z) = (�� + �e)�n

�n! M0;1
1,�n

(
(); (�� + �n + �e)(r)

(�1 + 1);(�� + �e)(1)

∣∣∣∣∣ z�e
)

= (�� + �e)�n
�n! ez

rFr

( �� + �n + �e
�� + �e

∣∣∣∣− z

)
.
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4.5.3. Multiple Laguerre II
In this case the polynomialsL(�,�c)

�n have the orthogonality conditions (1.1) with respect to
the weight functionswj (x) = x�e−cj x , j = 1, . . . , r, on [0, +∞), where� > −1, cj > 0

and all thecj different. They can be obtained from the Jacobi–Piñeiro polynomialsP
(�,��)

�n
by the substitutionsz → z

t
, taking�j = cj t and lettingt → ∞. We then get

L
(�,�c)

�n (z) = (� + 1)|�n|
�n! M0;0

1,�n

(
(); ()

(� + 1);()

∣∣∣∣ z�c
)

.

4.5.4. Multiple Hermite
In the multiple Hermite case we consider the type II multiple orthogonal polynomials

H �c
�n with respect to the weightswj (x) = e−x2+cj x , j = 1, . . . , r, on (−∞,+∞). Here the

cj are different real numbers. These polynomials can be obtained from the Jacobi–Piñeiro

polynomialsP ��,�
�n taking�j = �+cj

√
�, the substitutionz → (z+√�)/(2

√
�) and letting

� → +∞ after multiplying with some constant depending on�n and�.

5. Conclusion

In Section4we have shown that, for a particular restricted choice of parameters, formal
multiple Wilson polynomials contain both multiple Wilson and multiple Racah polynomi-
als. These polynomials can be found on the top of the scheme presented in Fig.2, which
resembles the well-knownAskey scheme for classical orthogonal polynomials. Every entry
of this scheme corresponds to an extension of classical orthogonal polynomials to the mul-
tiple orthogonality case, with measures having the same support. The arrows in this scheme
correspond to possible limit relations: most of them have explicitly been given in Sec-
tions4.3–4.5. It is well known that multiple Hahn polynomials and all multiple orthogonal

Multiple
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Pollaczek

Jacobi-
Piñeiro

Multiple

Meixner I

Multiple

Meixner II

Multiple

Kravchuk
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Laguerre II

Multiple
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M
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M
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M
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1,n

M
0;0/1

1,n

M
1;0

0,n

continuous

Fig. 2. An (incomplete) multiple AT-Askey scheme.
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polynomials occurring in the third and the fourth row of the scheme are examples of AT
systems. We conjecture that also the remaining families of measures in the first and the
second row of the scheme form an AT-system. This motivates us to call the scheme of Fig.
2 the multiple AT-Askey scheme.
This scheme does not contain all the possible examples of multiple orthogonal polyno-

mials generalizing the classical orthogonal polynomials of the Askey scheme. In[11] the
authors also mentioned some examples of Angelesco systems (with their hypergeometric
expression). It is also possible to change more than one parameter in the Wilson weight
(maybe with some correlation) in order to find other examples of multiple Wilson polyno-
mials. Then it is for example possible to obtain (other kinds of) multiple continuous Hahn
polynomials corresponding to positivemeasures on the real line, using some limit relations.
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